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Liquid-Glass Transition of a Fluid Confined in a Disordered Porous Matrix:
A Mode-Coupling Theory
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We derive an extension of the mode-coupling theory for the liquid-glass transition to a class of models
of confined fluids, where the fluid particles evolve in a disordered array of interaction sites. We find that
the corresponding equations are similar to those describing the bulk, implying that the methods of
investigation which were developed there are directly transferable to this new domain of application. We
then compute the dynamical phase diagram of a simple model system and show that new and nontrivial
transition scenarios, including reentrant glass transitions and higher-order singularities, can be predicted
from the proposed theory.
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Since the mode-coupling theory (MCT) of the liquid-
glass transition was proposed in the mid-1980s [1,2], it has
acquired a central role in this field of research [3–5].
Indeed, on the experimental or numerical side, it is very
often to the predictions of the MCT that new data are first
confronted [4,5], and on the theoretical side, models of
increasing complexity are regularly investigated within the
MCT framework as a means to unveil potential new phe-
nomena [6]. The reason for this strong influence of the
MCT lies in its ability to reproduce important phenome-
nological aspects of the dynamics of supercooled liquids:
First, of course, the slowing down of the structural relaxa-
tion when density is increased or temperature decreased,
but other more specific features as well, like the two-step
relaxation scenario. Moreover, it makes a number of pre-
cise universal predictions especially suitable for compari-
sons with experiment or simulation results, and, for simple
enough systems for which the MCT is tractable as a first
principles theory, it provides detailed predictions concern-
ing nonuniversal aspects of the dynamics as well, thus
allowing extensive quantitative tests of the theory [4,5].

In the past few years, a rapidly growing interest in the
dynamics of liquids under confinement has grown in the
glass transition community [7], with the aim of clarifying
the concept of cooperativity, a key ingredient of many glass
transition theories [8]. Indeed, confinement has appeared
as a means to impose to a glass-forming system a new
characteristic length scale (pore size, film thickness, etc.),
which should interact with any correlation or cooperativity
length developing in it, possibly leading to indirect infor-
mation on the nature and evolution with the temperature of
cooperativity. In the course of these investigations, at least
for some systems studied by computer simulation [9–11],
many features of the dynamics of bulk glass-forming
liquids which had found an interpretation in the framework
of the MCT have been uncovered. It then appeared natural
to compare the corresponding data with the predictions of
the MCT, even if the theory had been designed for bulk
fluids, and, because the tests were quite successful, the idea
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emerged that a mode-coupling scenario was at work in
confined fluids as well.

It seems thus that there is a clear need for an extension of
the MCT to confined glass-forming liquids. First, if this
theory turned out to be similar enough to the theory for the
bulk, this would put the studies of simulation data men-
tioned above on firmer ground, and more generally this
would provide a framework for the analysis of experimen-
tal or numerical data on confined fluids. Second, and
maybe more importantly, by applying the new theory to
various models, as it was done with its bulk counterpart, a
thorough exploration of the phenomenology of confined
glass-forming systems would become possible, potentially
allowing one to disentangle the different physical effects
which interplay in these systems.

It is the aim of this Letter to provide such an extension of
the MCT for a particular class of confined systems, the so-
called ‘‘quenched-annealed’’ (QA) binary mixtures. In
these systems, first introduced by Madden and Glandt
[12], the fluid molecules equilibrate in a matrix of particles
frozen in a disordered configuration sampled from a given
probability distribution. The models studied in
Refs. [10,13,14] belong to this class of systems, as does
the Lorentz model, which corresponds to a zero fluid
density limit. Besides, the proposed theory will borrow
ideas from the mode-coupling approaches to the
diffusion-localization transition in this model [15–17].

The theory is derived using the projection operator
method described in Ref. [3]. In the present problem, the
inner product of two arbitrary dynamical variables A and B
is given by hAB�i, where � denotes complex conjugation,
h� � �i a thermal average taken for a given realization of the
matrix, and � � � a subsequent average over the matrix
realizations. We thus consider a fluid made of Nf particles
of mass m, adsorbed in a homogeneous disordered matrix
consisting of Nm immobile sites. The system has volume
V; hence, the fluid and matrix densities are, respectively,
nf � Nf=V and nm � Nm=V. As in the bulk MCT, the
dynamical variables of interest are the Fourier components
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of the microscopic fluid density, 	fq�t� �
PNf
j�1 e

iqrj�t�,
where q denotes the wave vector and rj�t� is the position
of the fluid particle j at time t. But, before proceeding with
the dynamical theory, one has to take care of certain
peculiarities of the statics of QA systems. Indeed, because
of the presence of the quenched component, for a given
matrix realization, the translational invariance of the sys-
tem is broken. This implies that, at variance with bulk
fluids, time-persistent density fluctuations exist at equilib-
rium, i.e., h	fqi � 0. This fact is well known from the
derivation, using the replica method, of the Ornstein-
Zernike (OZ) equations describing this type of systems
[18–20], where it leads to the splitting of the total and
direct correlation functions of the fluid, respectively, hff�r�
and cff�r�, into two contributions, connected [hc�r� and
cc�r�] and blocked or disconnected [hb�r� and cb�r�]. A
similar splitting occurs for the structure factor of the fluid

Sffq � h	fq	
f
�qi=Nf � 1	 nfĥ

ff
q , leading to Sffq � Scq 	

Sbq with Scq�h�	fq�h	fqi��	
f
�q�h	f�qi�i=Nf�1	nfĥ

c
q

and Sbq � h	fqih	
f
�qi=Nf � nfĥ

b
q, where f̂q denotes the

Fourier transform of f�r�. For future reference, we define
the matrix-matrix and fluid-matrix structure factors and
total correlation functions as well, which are given by

Smmq � h	mq	
m
�qi=Nm � 1	 nmĥ

mm
q and Sfmq � h	fq	m�qi=�������������

NfNm
p

�
�����������nfnm

p ĥfmq ; 	mq �
PNm
j�1 e

iqsj , where sj is the
fixed position of the matrix particle j, is the q Fourier
component of the quenched microscopic matrix density.

It thus follows that, if one is interested only in the
relaxing part of the fluid density fluctuations, one has to
consider the dynamical variable �	fq�t� � 	fq�t� � h	fqi
rather than 	fq�t� itself. Using the standard method, a
generalized Langevin equation for the time evolution of
the normalized autocorrelation function of the connected

density fluctuations �q�t� � h�	fq�t��	
f
�qi=�NfS

c
q� can

then be derived, which is formally identical to the equation
for bulk fluids, i.e.,

��q 	�2
q�q 	�2

q

Z t

0
d�Mq�t� �� _�q��� � 0; (1)

with �2
q � q2kBT=�mS

c
q�, where T is the temperature and

kB the Boltzmann constant. The memory function is given
by �2

qMq�t� � hRq�t�R�qi=�NfmkBT�, where Rq�t� �

exp�i�1� P �L�1� P �t�i�1� P �Lgfq is the projected
random force obtained from the longitudinal fluid momen-
tum density fluctuation gfq�t�. L is the Liouville operator of
the system, and P is the projector onto the subspace of
dynamical variables spanned by �	fq and gfq.

We now obtain the slow decaying portion of the memory
kernel with a mode-coupling approach, assuming that the
slow decay of the projected random force autocorrelation
function is dominated by couplings to two types of qua-
dratic dynamical variables, B�1�

q;k � �	fk�	
f
q�k, in analogy
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with the bulk MCT, and B�2�
q;k � �	fk	

m
q�k, following pre-

vious work on the Lorentz gas [15–17]. Defining the
projector P 0 on the subspace spanned by the Bq;k’s, the
mode-coupling part of the memory function is then ex-
pressed as �2

qM
�MC�
q �t� � hP 0Rq�t�P 0R�qi=�NfmkBT�. To

complete the calculation ofM�MC�
q , two steps remain. First,

a factorization approximation is required to express four-
point density correlations into products of two-point den-
sity correlations. Following the usual mode-coupling pre-
scription then leads to (we note Q � 1� P )

h�eiQLQt�	fk�	
f
q�k��	

f
�k0�	

f
�q	k0 i

’ ��k;k0 	 �k;q�k0 �N2
fS
c
kS
c
jq�kj�k�t��jq�kj�t�;

h�eiQLQt�	fk	
m
q�k��	

f
�k0	m�q	k0 i

’ �k;k0NfNmS
c
kS
mm
jq�kj�k�t�;

h�eiQLQt�	fk�	
f
q�k��	

f
�k0	m�q	k0 i ’ 0:

A crucial point here is that, since the matrix is quenched,

	mq shows no thermal fluctuations: h�	fq�t�	m�qi is thus

identically zero [remember that �	fq�t� � 	fq�t� � h	fqi].

Second, one needs to calculate hRqB
�l�
�q;�ki �

hiLgfqB
�l�
�q;�ki � hiPLgfqB

�l�
�q;�ki. The first term is readily

handled by application of the Yvon theorem, just as in the
bulk MCT. The second one is far more delicate, since it
involves three-point connected static correlations of the
QA system. Usually, such terms are estimated using the
so-called convolution approximation [21] which leads to
remarkable simplifications in the resulting mode-coupling
equations. An extension of the convolution approximation
to QA systems has thus been developed which gives

h�	fq�	
f
�k�	

f
�q	ki � NfScqSckS

c
jq�kj;

h�	fq�	
f
�k	

m
�q	ki �

�������������
NfNm

q
ScqSckS

fm
jq�kj:

Eventually, assuming that the contributions to the mem-
ory kernel not included inM�MC�

q can be replaced by a white
noise term q��t�, we obtain the mode-coupling equations
for the collective dynamics of a QA mixture, Eq. (1) with
Mq�t� � q��t� 	M�MC�

q �t� and

M�MC�
q �t��

1

V

X
k

V�2�
q;k�k�t��jq�kj�t�	V

�1�
q;k�k�t�; (2a)

V�2�
q;k�

1

2
nfScq

�
q �k
q2

ĉck	
q � �q�k�

q2
ĉc
jq�kj

�
2
SckS

c
jq�kj;

(2b)

V�1�
q;k�nmS

c
q

�
q � �q�k�

q2
	nf

q �k
q2

ĉck

�
2 �ĥfmjq�kj�

2

Smm
jq�kj

Sck;
(2c)

where the replica OZ equations were used to introduce the
relevant direct correlation functions [18,19].
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The same procedure can be applied to the dynamics of a
tagged particle and the corresponding equations will be
reported in a forthcoming paper.

Equations (1) and (2) form the proposed MCT for QA
mixtures. As in the bulk, they involve static quantities only,
and, more crucially, they retain the mathematical structure
of the typical mode-coupling equations which have been
extensively studied in Ref. [3]. Thus, all the known prop-
erties of the solutions of MCT equations, in particular, their
universal behaviors, apply a priori unchanged to QA mix-
tures. This means that, in principle, the analysis performed
in Ref. [10] is as legitimate as all the analogous ones done
on bulk systems.

As one would expect, the present theory integrates the
previously known mode-coupling theories as limiting
cases: In the limit of vanishing matrix density, the bulk
MCT [2] is recovered, while in the limit of vanishing fluid
density, the MCT equations for the Lorentz gas [17] are
obtained. Since both limits show ergodicity-breaking tran-
sitions (ideal glass transitions in the first case, diffusion-
localization transitions in the second), the present theory,
which ‘‘interpolates’’ between them, is bound to display
such phenomena.

To illustrate this point and as a first demonstration of the
potentialities of the theory, we have computed the dynami-
cal phase diagram of a simple QA system (the models of
Refs. [10,13] would be quite complex for a preliminary
study). This is the one studied in Ref. [14], which consists
of a fluid of hard spheres confined in a matrix of hard
spheres frozen in an equilibrium configuration. Both the
fluid and matrix particles have diameter  , and the system
0
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FIG. 1. Dynamical phase diagram of a hard sphere fluid con-
fined in a matrix of identical hard spheres frozen in an equilib-
rium configuration.�f and�m denote, respectively, the fluid and
matrix compacities. Point E is the common end point of the
type A and the type B transition lines.
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is characterized by two volume fractions �f � !nf 
3=6

and �m � !nm 
3=6. The Percus-Yevick approximation

[18,22] is used to compute the required structural quanti-
ties. Since we are confronted with basically the same
equations as in bulk systems, the numerical procedures to
track ergodicity-breaking transitions signalled by the ap-
pearance of a nonzero infinite time limit to �q�t� do not
differ from those used there. We have applied the method
that is described in Ref. [23].

The corresponding dynamical phase diagram is reported
in Fig. 1. It consists of two transition lines. On the one
hand, starting from the bulk fluid (�m � 0) transition point
and increasing �m, one follows a line of discontinuous or
type B transitions, where fq � limt!1�q�t� jumps discon-
tinuously from zero to a nonzero value when moving from
the ergodic liquid phase to the nonergodic glassy phase.
Along this line, as �m is increased, the amplitude of the
jump decreases to zero and the exponent parameter ",
which determines many properties of the solutions of the
mode-coupling equations [3–5], increases from its bulk
value (of about 0:73) to one, its largest allowed value. On
the other hand, moving away from the diffusion-
localization (�f � 0) transition point by increasing �f,
one follows a line of continuous or type A transitions, from
which fq grows continuously from zero when the system
enters in the glassy domain. Here, as �f is increased, "
grows continuously from zero to one, the allowed interval
for type A transitions.

Both lines connect smoothly at a common end point E,
where " � 1 for both. Point E corresponds to a degenerate
A3 singularity, a generic type of topologically stable sin-
gularities already known from the so-called F12 model
[24]. To our knowledge, this widely studied one equation
toy model had never found any physical realization until
now. This result has important physical implications, since,
in the vicinity of such a higher-order singularity, the dy-
namics are known to display very specific features, most
significantly logarithmic decay laws and subdiffusive be-
haviors [3,6,25].

Beside this specific bifurcation scenario, and formally
not related to it, another remarkable prediction of the
present theory lies in the shape of the phase diagram.
Indeed, starting from the zero fluid density limit and in-
creasing �f, the matrix density at which the system be-
comes frozen first increases, reaches a maximum, and then
decreases until the bulk limit is reached. The last behavior
can be easily understood from simple free volume argu-
ments: Because of the volume excluded by the matrix
particles, the larger the matrix density is, the smaller the
fluid density has to be for structural arrest to occur. The first
regime, however, is quite unexpected and might be due to a
partial relaxation of the dynamical correlations which lead
to the localization of a single particle moving in the porous
medium by the introduction of collective density fluctua-
tions at a finite but small fluid density. Overall, this non-
monotonic behavior of �m at the dynamical transition
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leads to reentrant type A transitions; i.e., for a given matrix
density, ergodicity can be broken both by an increase or a
decrease of the fluid density.

All these predictions (bifurcation scenario, logarithmic
decay laws, shape of the transition lines, evolutions of fq
and " along these lines) can be tested by computer simu-
lations to judge the validity of the present theory.
Unfortunately, the focus of the work of Ref. [14] was not
on a putative mode-coupling scenario, and thus only indi-
rect and not so convincing comparisons in favor of the
theory can be made. For instance, these authors found that
at the lowest investigated fluid density (�f � 0:05), the
dependence of the diffusion coefficient on �m was differ-
ent from the one found at higher fluid densities. This might
be a signature of the nonmonotonicity of the transition line
in this low fluid density regime. Another of their observa-
tions, made in Ref. [13] as well and not so surprising, is
that the inclusion of matrix particles slows down the dy-
namics more efficiently than the inclusion of the same
amount of fluid particles. Here, this is reflected in the
fact that the total compacity �tot � �f 	�m at the tran-
sition is a decreasing function of �m in the top part of the
phase diagram of Fig. 1. Thus, at a transition point, the
corresponding value of�tot being held fixed, an increase of
�f at the expense of�m, leads to an ergodic system, while
the reverse change drives the system deeper into the non-
ergodic domain. This looks encouraging, but clearly more
simulation work is needed.

In summary, we have developed an extension of the
MCT to the QA mixture model of confined fluids. The
corresponding equations turn out to be similar to those of
the MCT for the bulk, so that all the applications of the
theory which have been conceivable for the bulk, like tests
of its universal predictions or quantitative comparisons
with computer simulations for simple models, are trans-
posable to the present class of systems. The calculation of
the dynamical phase diagram of a simple system shows
that new and complex bifurcation scenarios can be pre-
dicted and that a rich phenomenology could be unveiled by
a systematic study of models of increasing complexity.
Such a work is under way.

This, of course, does not exhaust the question of a
general mode-coupling description of confined glass-
forming fluids. Indeed, the QA mixture has the simplifying
feature that it corresponds to a statistically homogeneous
confinement, while many studies have been done for slit,
cylindrical, or spherical geometries of the confining me-
dium. The present development should, nevertheless, rep-
resent a valuable means to improve our general
understanding of the slow dynamics of confined glass-
forming liquids.

It is a pleasure to thank W. Götze for useful comments
and G. Tarjus for fruitful discussions and, together with
M. L. Rosinberg and E. Kierlik, for an earlier collaboration
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