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Nondiffusive Transport in Plasma Turbulence: A Fractional Diffusion Approach
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Numerical evidence of nondiffusive transport in three-dimensional, resistive pressure-gradient-driven
plasma turbulence is presented. It is shown that the probability density function (pdf) of tracer particles’
radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results
we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space
and time that incorporate in a unified way space-time nonlocality (non-Fickian transport), non-
Gaussianity, and nondiffusive scaling. The fractional diffusion model reproduces the shape and space-
time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the

observed superdiffusive scaling.
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Recent experimental and theoretical evidence indicates
that transport in magnetically confined fusion plasmas
deviates from the standard-diffusion paradigm. Typical
examples include the confinement time scaling in low
confinement mode plasmas [1,2], perturbative experiments
[3-5], and the non-Gaussianity and long-range correla-
tions of fluctuations [6]. The standard-diffusion paradigm
breaks down in these cases because it rests on restrictive
assumptions including locality, Gaussianity, lack of long-
range correlations, and linearity. In particular, according to
Fick’s law, the fluxes, which contain the dynamical infor-
mation of the transport process, are assumed to depend
only on local quantities, i.e., the gradients of the fields.
Also, at a microscopic level, the diffusion paradigm as-
sumes the existence of an underlying uncorrelated,
Gaussian stochastic process, i.e., a Brownian random
walk. The need to develop models that go beyond these
restrictive assumptions is the main motivation of this Letter
that has two connected goals. The first goal is to show
numerical evidence of nondiffusive transport in pressure-
gradient-driven plasma turbulence. We do this by integrat-
ing tracer particles in the E X B flow obtained from a
nonlinear, three-dimensional turbulence model. Tracer par-
ticle studies of this type have the advantage that incorpo-
rate in the particle trajectories all the physics of the
turbulence model. However, this “microscopic’’ approach
has the limitation of being time consuming, and potentially
redundant in the sense that it tracks individual, particle
orbit information that from a statistical point of view might
be irrelevant. This issue takes us to the second goal which
is to propose and test a macroscopic model describing the
statistical properties of transport in pressure-gradient-
driven plasma turbulence. The proposed model is based
on fractional derivative operators which incorporate in a
natural, unified way nonlocality in space and time, non-
Gaussianity, and anomalous diffusion scaling.

The underlying instability in pressure-gradient-driven
plasma turbulence is the resistive interchange mode, driven
by the pressure gradient in regions where the magnetic
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field line curvature is negative. In this system, changes in
the pressure-gradient trigger instabilities at rational sur-
faces that locally flatten the pressure profile and increase
the gradient in nearby surfaces. This in turn leads to
successive instabilities and intermittent, avalanchelike
transport [7], which has been observed to cause anomalous
diffusion [8]. This instability is the analog of the Rayleigh-
Taylor instability, which is extensively studied in fluids and
is responsible for the gravity-driven overturning of a low
density fluid laying below a high density fluid. In magneti-
cally confined plasmas the role of gravity is played by the
curvature of the magnetic field lines which in cylindrical
geometry is always negative and depends only on the
radius. The turbulence model that we use describes the
coupled evolution of the electrostatic potential ® and
pressure p in a cylinder [7]:
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where the tilde denotes fluctuating quantities (in time and
space), and the bracket, (), denotes the poloidal and the
toroidal angular (flux surface) average. The magnetic field
B is assumed to be on a cylinder with the axis along the z
axis. The equilibrium density is ng, the ion mass is m;, the
averaged radius of curvature of the magnetic field lines is
r., and the resistivity is 7. The subindex “1”’ denotes the
direction perpendicular to the magnetic field, and the sub-
index ‘|| denotes the direction parallel to the magnetic
field. In both Egs. (1) and (2) there are dissipative terms
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with characteristic coefficients u (the collisional velocity)
and Y, (the collisional cross-field transport). A parallel
dissipation term proportional to ) is also included in the
pressure equation. This term can be interpreted as a parallel
thermal diffusivity. In all the calculations discussed here,
we assume a vanishing poloidal flow velocity, (V) = 0.
The evolution equation of the flux surface averaged pres-
sure,
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contains a source term, Sy, which is only a function of r; in
the present calculations S, = Sy[1 — (r/a)?]. The parame-
ter D represents the collisional transport, and its value is
consistent with collisional diffusion. The model parame-
ters used here are u = 0.2a%/7; and y; = 0.0254%/7;,
where 7, = a’u/n is the resistive time and a the minor
radius. The rest of the parameters in the model can be
reduced to two dimensionless quantities: the Lundquist
number, which is taken to be S = 10°, and B,/2e> =
0.018, where B, is the value of B at the magnetic axis
and & = a/R,. The numerical calculations were carried
out with the KITE code [9] using 363 Fourier components to
represent the poloidal and toroidal angle dependence for
each fluctuating component, and a radial grid resolution of
Ar =750 X 10"%a.

Having computed the electrostatic potential d, we
studied transport by following tracer particle orbits deter-
mined from the solutions of the equation of motion
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Since the magnetic field is fixed, the turbulence-induced
transport is only due to the fluctuating electrostatic poten-
tial. As an initial condition we used 25 000 tracer particles
with random initial positions in # and z, and radial position
r = 0.5a. Finite size effects did not seem to be relevant
because during the evolution there were very few particles
moving out of the domain. It is observed that tracer parti-
cles either get trapped in eddies for long times or jump over
several sets of eddies in a single flight, giving rise to
anomalous diffusion [8]. Our main object of study is the
probability density function (pdf) of radial displacements
of the particles, P(x, t), where x = (r — a/2)/a and t =
7/7g. As t evolves, the pdf broadens and develops tails.
The triangles in Fig. 1 show P(x, f) at t = 0.64 in a log-
normal scale, obtained from the histogram of particle dis-
placements. The numerical results show that for times
above ¢t = 0.1 the moments of the tracer particle displace-
ments exhibit superdiffusive scaling, (x") ~ **, with v =
0.66 = 0.02.
The generic form of the proposed model is

sDPP = x[w™ D + w* DEIP + A, (5)

where A is a source,
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FIG. 1. Non-Gaussian probability density function of tracer
particles in plasma turbulence. The triangles denote the results
from the turbulence model in Eqgs. (1)—(4). The solid line is the
analytical solution in Eq. (11) of the symmetric (w" = w™)
fractional diffusion model in Eq. (5) with @ = 3/4, B8 = 1/2,
and y = 0.09. The inset on the left shows the parabolic depen-
dence of the core of the pdf according to Eq. (13), and the log-
log inset on the right shows the algebraic decay of the tails with
exponent 1 + a = 7/4.
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are the left and right Riemann-Liouville fractional deriva-
tives, respectively, w™= are weighting factors, and m — 1 <
a < m with m a positive integer. The operator on the left-
hand side of Eq. (5) is the Caputo fractional derivative in
time of order 0 < B < 1,
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Fractional derivatives are natural generalizations of regular
derivatives. As expected, for a and $ integers, these op-
erators reduce to regular derivatives, and results of regular
calculus extend directly to the fractional domain [10]. The
fractional model can be equivalently written in the flux
conservative from 9,P = —d,[w T, +w*'l,], where
Iy=—x,D¢"',D; PP and T,=y.D¢ ' D, PP
According to this, non-Fickian effects due to avalanchelike
events that induce large displacements of tracers are de-
scribed using nonlocal, integro-differential operators in
space. The flux at x consists of a ““left-sided”” contribution,
Iy, from the (a, x) interval, and a “‘right-sided” contribu-

§DIP =

dr. (8)
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tion, I',, from the (x, b) interval. The time integrals in the
fluxes account for non-Markovian, ‘“memory’’ effects due
to the trapping of tracers in eddies. The parameters w>
determine the relative weight of the fluxes. Because the
individual tracers follow the turbulent velocity field V
according to Eq. (4), the pdf of the tracers satisfies the
passive scalar equation d,P = —(V - V)P. In this regard,
the results presented here represent a first step in a phe-
nomenological renormalization of V= E X B turbulent
transport using fractional transport operators according to
the prescription V-V — o [w T, + w'T,].

The physics behind the model in Eq. (5) can be further
understood from the close connection with the theory of
random walks. The standard-diffusion model is a macro-
scopic description of the Brownian random walk which
assumes that at fixed time intervals t = T, 27T, ..., nT, ...
particles at a microscopic level experience an uncorrelated
random displacement, or jump, €,, with probability P,,
where P, is assumed to have a finite second moment. In a
similar way, fractional diffusion models can be viewed as
macroscopic descriptions of generalized Brownian random
walks known as continuous time random walk (CTRW)
models [11]. In addition to the jump probability density
P., the CTRW model introduces a waiting time probability
function P,. The different types of CTRW processes, and
the resulting macroscopic transport models, can be classi-
fied based on the characteristic waiting time, 7, and the
characteristic mean-square jump, o, being finite or diver-
gent [11]. Based on this, the model (5) can be understood
as a general macroscopic description of an underlying
microscopic stochastic process in which particles exhibit
both jumps without a characteristic spatial scale and wait-
ing times without a characteristic time scale. The space
nonlocality is a direct consequence of the existence of
anomalously large jumps (known also as Levy flights)
that connect distant regions in space, and the time non-
locality is due to the history dependence introduced in the
dynamics by the presence of anomalously large waiting
times.

The fractional diffusion model in Eq. (5) is fairly gen-
eral, and, depending on the values of «, 8, and w™, differ-
ent transport processes can be modeled, including
subdiffusive transport, superdiffusive transport, and asym-
metric transport. In what follows we show that, for the
symmetric, superdiffusive transport observed in pressure-
gradient-driven turbulence, w* = w~ =1/ V2, =3 /4,
B = 1/2,and A = 0. In this case, the solution of Eq. (5) in
the infinite domain x € (—o0, 00) can be written as

P(x, 1) = /oo G(x — X, )P(x', 0)dx/, 9

where G(x, 1) = (x'/#1)B/*K(n) is the Green’s function
of the fractional diffusion equation,

K(n) = ! ]oo cos(nz)Eg(—2z%)dz, (10)
T )0

Ej is the Mittag-Leffler function, and = x(x'/#1)~A/® is
a similarity variable [10,12]. As expected, for « = 2 and
B =1, GreducestoaGaussian.For B =1, 1<a =2,G
becomes a symmetric Levy stable distribution [13], and,
for 0 < B <1, a =2, it reduces to the solution of the
subdiffusion fractional equation [11]. Consistent with the
initial condition used in the tracer particle calculation, we
consider P(x,0) = Py/e, for |x| = &/2 and 0 otherwise,
with & < 1, and write the solution as

1
Pl ) = 5 (/e #le [T

? K(z)dz, (11)

where 8 = (£/2)(x'/#1)~F/* < 1. Outside the support of
the initial condition, |x| > &/2, Eq. (11) can be written as a
power series in the small parameter J:

52
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From Eq. (12), using the asymptotic properties of K, it
follows  that, for x> (x'/Bnkle,  P(x, 1) ~
xPx~ O[] + (e2/4)(a + 1)(a + 2)x72...]. That is,
the tracers’ pdf exhibits algebraic tails with the decay
exponent equal to 1 + a. On the other hand, in the |x| <
g/2 region, Eq. (11) gives, in the small § limit,

ale) [0 )]

L._ B
(x\/Br)Bl=’

P(x, 1) =

(13)

where A and B are known constants determined from the
small 7 limit of the function K. As expected, near the
origin, the core of the distribution exhibits a parabolic
profile. Figure 1 shows the quantitative agreement between
the numerical data from the tracer particles in the 3D
turbulence calculations, and the solution of the fractional
diffusion model according to Egs. (12) and (13). The index
[ determines the time-asymptotic scaling properties of P.
To show this, we introduce the time-scaling variable { =
x"/Ptlx|~%/B, and write the solution as

P = |x|7'{PleK (P, (14)

Using again the large 7, and also the small 1 asymptotic
behavior of the function K(7), it follows that P(x,, t) ~ 2,
for x'/Bt < |xo|*’P, and P(xq t) ~ 1B, for x'/Br>
|xo|*/B. This scaling is verified in Fig. 2 that shows the
evolution in time of P at a fixed position x,. The analytical
solution according to Eq. (14), shown with a solid line,
exhibits algebraic tails in the small ¢ and large ¢ limits, and
the expected peak at intermediate times. The circles and
the triangles in the figure denote the results obtained from
the tracer particle turbulence simulations. The agreement is
good, but not as sharp as the one in Fig. 1 due to the
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FIG. 2. Time evolution of the probability density function of
tracer particles in plasma turbulence. The circles and the tri-
angles denote the results from the turbulence model in Egs. (1)—
(4). The solid line is the analytical solution in Eq. (14) of the
symmetric (wt = w™) fractional diffusion transport model in
Eq. (5) with @ =3/4, B =1/2, and y = 0.09. In agreement
with the asymptotic result, the dashed lines in the inset show an
algebraic dependence of the tails with exponent |8| = 1/2.

numerical limitations in the integration of the turbulence
model for large times. The moments of the tracer particle
displacements scale as {(x") ~ "V, with v = B/a. For & =
3/4and B = 1/2, v = 2/3, avalue in very good agreement
with the one obtained in the turbulence simulation, » =
0.66 = 0.02. The superdiffusive scaling implies an anoma-
lous confinement time scaling 7, ~ a’/2, a reasonable value
in the range of the experimentally determined values which
typically deviate from the standard-diffusion prediction
t, ~a®[2].

To summarize, we have presented numerical evidence of
nondiffusive transport of tracers in three-dimensional, re-
sistive, pressure-gradient-driven plasma turbulence. The
pdf of displacements is strongly non-Gaussian, with alge-
braic tails, and the moments exhibit superdiffusive scaling.
We proposed a macroscopic transport model with frac-
tional derivative operators of order a = 3/4 in space,
and order 8 = 1/2 in time. The model incorporates, in a
unified way, space nonlocality (non-Fickian transport),
memory effects (non-Markovian transport), and anoma-
lous diffusion scaling. There is quantitative agreement
between the model and the turbulence transport calcula-
tions. The plasma turbulence model used in the calcula-
tions is the same as the one used in Ref. [7] to explore the
role of SOC (self-organized criticality) in plasma confine-
ment. In this regard, the present results provide evidence
that some aspect of SOC-like systems can be described
with fractional transport models. We have restricted atten-
tion to passive scalars. As a first step to study the transport
of active scalars, we have followed the evolution of local-

ized pressure pulses in nonsteady turbulence. Preliminary
results indicate that positive and negative pressure pulses
exhibit superdiffusive scaling with the same anomalous
diffusion exponent found in the passive scalar problem
[14]. However, the active nature of the pressure manifests
in interesting asymmetries in the spreading of the pulses
that remain to be described within the framework of frac-
tional models. Most likely, this will require the use of
asymmetric, w~ # w, fractional operators that incorpo-
rate pinch effects and asymmetric tails. An interesting and
important problem is to understand the interplay of non-
linearity and fractional diffusion. As a first step in this
direction we have added to Eq. (5) a nonlinearity of the
form P(1 — P), typically used in reduced models of the
L — H transition (e.g., Ref. [15]). Numerical and analyti-
cal results on this model indicate that nonlinearity, and the
nonlocality of fractional diffusion, lead to an exponential
propagation of fronts [16]. These results might be relevant
in the study of rapid propagation phenomena in the L — H
transition.
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