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Nonlinear Evolution of q � 1 Triple Tearing Modes in a Tokamak Plasma
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In magnetic configurations with two or three q � 1 (with q being the safety factor) resonant surfaces in
a tokamak plasma, resistive magnetohydrodynamic modes with poloidal mode numbers m much larger
than 1 are found to be linearly unstable. It is found that these high-m double or triple tearing modes
significantly enhance through nonlinear interactions the growth of the m � 1 mode. This may account for
the sudden onset of the internal resistive kink, i.e., the fast sawtooth trigger. Based on the subsequent
reconnection dynamics that can proceed without formation of the m � 1 islands, it is proposed that
high-m triple tearing modes are a possible mechanism for precursor-free partial collapses during sawtooth
oscillations.
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The profile of the safety factor q�r� (which measures the
magnetic field line pitch) contains information about the
instability characteristics of magnetically confined plas-
mas in toroidal or helical systems with respect to current-
driven magnetohydrodynamic (MHD) instabilities. In par-
ticular, in the presence of magnetic surfaces where q � 1,
a mixing of the plasma inside these surfaces was observed.
This instability is thought to be closely related to internal
disruptions, generally known as sawtooth oscillations,
which strongly affect the quality of energy and particle
confinement. In view of the desired application to thermo-
nuclear fusion reactors such as ITER, a detailed under-
standing of these internal large-scale instabilities is
necessary.

A heuristic model proposed by Kadomtsev [1] success-
fully explains overall phenomena associated with a full
sawtooth crash. In this model, a perturbation with helicity
h � m=n � 1 (m being the poloidal and n the toroidal
Fourier mode number), which is in resonance with the
closed field lines on the q � 1 surface, quenches the hot
core region inside the q � 1 surface through magnetic
reconnection. This kind of relaxation, generally known as
the m � 1 internal resistive kink instability (in short, the
m � 1 mode), has been observed to exhibit an abrupt
onset, which is called a ‘‘fast trigger.’’ However, a satis-
factory explanation of this fast trigger is not yet known.
Another unresolved problem is the possibility of a partial
sawtooth collapse, where the m � 1 mode saturates before
the reconnection of the core is completed, so only an
annular (off-axis) region undergoes mixing [2].

During the evolution of a tokamak plasma subject to
sawtooth relaxation oscillations, multiple q � 1 resonant
surfaces may arise temporarily [3]. When this occurs in
configurations with a hollow current profile (q0 > 1 with
q0 being the q at the magnetic axis), q � 1 double tearing
modes (DTMs) can become unstable [4–6] whereas, for a
centrally peaked current profile (q0 < 1), q � 1 triple tear-
ing modes (TTMs) may arise [6].
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In this Letter, it is demonstrated that some of the phe-
nomena associated with the sawtooth oscillations in toka-
maks can be explained by the nonlinear evolution of DTMs
or TTMs. Using nonlinear numerical simulations, it is
shown that, in the presence of multiple q � 1 resonant
surfaces, rapidly growing high-m DTMs or TTMs can
enhance the growth of the m � 1 mode and later generate
electromagnetic turbulence in the annular region sur-
rounded by the q � 1 resonant surfaces. Based on these
observations, it is shown that the fast trigger of a sawtooth
crash as well as precursor-free partial collapses during
sawtooth relaxation oscillations can be accounted for by
the nonlinear evolution of TTMs.

The set of equations we use is the reduced magneto-
hydrodynamic (RMHD) equation in the zero-beta limit in a
cylindrical geometry. In normalized form the RMHD
model can be written as

@t � � ;� � @�� S�1
Hp ��̂j� E0�; (1)

@tu � �u;� � �j;  � � @�j� �r2
?u; (2)

where  is the magnetic flux function,  the stream
function (electrostatic potential), j � �r2

? the axial cur-
rent density, and u � r2

? the vorticity, essentially fol-
lowing the standard notation (cf., e.g., Ref. [7]). The time t
is normalized by the poloidal Alfvén time �Hp (time scale
for dynamics in an ideal magnetized plasma) and the radial
coordinate by the minor radius a of the plasma column.
The resistivity profile is given by �̂�r� � j�r � 0; t � 0�=
j�r; t � 0�. As to the Lundquist number SHp � �R=�Hp
[where �R � �0=��0a2� is the resistive time scale and �0

the resistivity at r � 0] and viscosity � (normalized by
a2=�Hp), SHp���1�106 is used, unless stated otherwise.
The constant source term E0 compensates the resistive
dissipation of the equilibrium current. Using a quasispec-
tral code with a finite-difference radial mesh, single helic-
ity (h � m=n � 1, 0 
 m 
 127) nonlinear simulations of
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Eqs. (1) and (2) were performed with an initial condition
corresponding to a flowless equilibrium with perturbed
flux function [ m>0�t � 0� � 10�11, m � n]. An ideally
conducting wall was taken as the boundary condition.
Although the RMHD model encompasses only part of
the physical effects involved in sawtooth oscillations (cf.,
e.g., Refs. [2,8,9]), it suffices for the present purpose of
following the fundamental dynamics of DTMs and TTMs.

The important new feature of linear instability that is
addressed here is the fact that configurations with multiple
q � 1 resonant surfaces in general possess a broad spec-
trum of linearly unstable modes. Moreover, the fastest
growing mode often has a poloidal mode number m�
O�10�. To show this, the q profile shown in Fig. 1 is
employed, where three q � 1 resonant surfaces are
present, at the radii rs1 < rs2 < rs3. By evolving the line-
arized RMHD equations in time, spectra of linear growth
rates (i.e., dispersion relations) �lin�m� were obtained as
functions of m, as plotted in Fig. 2 for Lundquist numbers
SHp � 106, 107 and 109. Hereby the Prandtl number Pr �
SHp� has been kept equal to unity. Clearly, a variation of
SHp (while Pr � 1) retains the broadness of the spectrum
and �max � maxf�lin�m�g is located at m> 1 in all cases.

The dependence of the spectrum �lin�m� on the distance
between the q � 1 surfaces is most easily investigated by
considering DTM configurations where two q � 1 reso-
nant surfaces are present, located at radii rs1 and rs2, a
distance D12 � rs2 � rs1 apart. In Fig. 3 the DTM growth
rate spectra for profiles with D12 � 0:05, 0.1, and 0.2 are
shown. While varying D12, the local magnetic shears at the
resonant radii, s1 � s�rs1� and s2 � s�rs2�, were not
changed. It can be seen that the narrower the interreso-
nance region becomes, the more the poloidal mode number
of the fastest growing mode shifts to larger values ofm, and
�max increases. On the other hand, the growth rate of the
m � 1 mode hardly depends on D12 and it becomes the
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FIG. 1. A safety factor profile q�r� unstable to TTMs. Vertical
lines (dashed) indicate the locations of the q � 1 resonant
surfaces, rs1 < rs2 < rs3, and q � 1 is indicated by a horizontal
(dotted) line.
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fastest growing mode for sufficiently large values of D12.
Similar results are found for TTMs, whereby it is noted that
TTMs tend to peak at higher m with higher growth rates
than DTMs with similar Dij. The spectra shown in Figs. 2
and 3 contrast with that for the single tearing modes
(STM), for which the m � 1 mode is dominant and the
modes with higher m are usually linearly stable. Note that
the broad spectra of tokamak TTMs that were obtained
here are similar to those of tearing modes obtained by
Dahlburg and Karpen [10] for triple current sheets in slab
geometry as a model for adjoining helmet streamers in the
solar corona.

It must be emphasized that the dispersion curves in
Fig. 2 show only the growth rate of the most unstable
mode for each m. However, in general, for a given m there
are up to three unstable TTM eigenmodes, each associated
with a resonant surface. To illustrate this, the radial struc-
ture of the eigenmodes form � 1 andm � 13 are shown in
Fig. 4, which were obtained by solving the eigenvalue
problem for the linearized equations (1) and (2). Here
M1�m� denotes the eigenmode with the poloidal mode
number m that extends only to the innermost resonant
surface rs1. Note that M1�1� has the same mode structure
as an STM. Similarly, M2�m� and M3�m� denote the eigen-
modes that extend to rs2 and rs3, respectively. It is also
noted that, for m � 13, M1 (not shown) is stable, as can be
expected from the linear stability of STMs with higher m.
Similar eigenmode structures are found for DTMs, and
indeed similar instability characteristics are also expected
for q profiles with more than three q � 1 resonant surfaces.

After perturbing a large number of unstable modes at
random poloidal angles, them � 1 mode evolves as shown
in Fig. 5. The most remarkable feature here is the presence
of a phase of nonlinearly driven growth. There, the energy
of the m � 1 perturbed mode grows exponentially as
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FIG. 2. Linear growth rate spectra of TTMs for the q profile
given in Fig. 1 for the Lundquist numbers SHp � 106, 107, and
109 and constant Prandtl number Pr � SHp� � 1.
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FIG. 3. Linear growth rate spectra of DTMs for q profiles with
two q � 1 resonant surfaces located a distance D12 apart,
obtained with SHp � ��1 � 106. In the three cases shown,
D12 � 0:05, 0.1, and 0.2, respectively.
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exp��drivet�. In this example, �drive � 0:16, i.e., the m � 1
mode grows at a rate which is one order of magnitude
larger than its linear growth rate �lin�m � 1� � 16� 10�3.
The nonlinear growth rate �drive approximately equals
twice the maximum growth rate in the spectrum (Fig. 2),
�max � 0:08, because it results from the nonlinear cou-
pling of m and m� 1 mode pairs.

The growth rates shown in Fig. 2 belong exclusively to
M3�m� modes, i.e., the modes extending to the outermost
resonant surface at r � rs3, since it was assumed here that
s1 < s3 (s1 � 0:35, s2 � �0:56, s3 � 1:20). On the other
hand, for a q profile with s1 > s3, the eigenmode M1�m �
1� has a higher growth rate thanM3�m � 1�. However, also
in this case, the highest growth rate among all m modes,
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FIG. 4. Radial structure of linearly unstable TTM eigenmodes
for (a) them � 1 modes of  , (b) them � 13 modes of  , (c) the
m � 1 modes of , and (d) the m � 13 modes of  obtained for
SHp � ��1 � 106. For a given m, the eigenmode extending to
the resonant radius rsi is denoted by Mi�m�. Vertical lines
(dotted) indicate resonant radii.
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�max, is typically several times larger than �lin�m � 1� and
therefore the nonlinearly driven growth of them � 1 mode
still exceeds its linear growth. It is concluded that the rapid
nonlinear growth of TTMs occurs in a wide range of TTM
q profiles. Since the sawtooth crash is generally considered
to be triggered by the onset of an m � 1 mode [9], the
results presented here suggest that the nonlinear growth of
TTMs (or DTMs for a hollow current profile) is one of the
possible mechanisms for experimentally observed abrupt
sawtooth crashes, i.e., the fast trigger. Let us note that
coupled tearing modes on two nearby resonant surfaces
can exhibit exponential non-Rutherford growth to satura-
tion even for q > 1 [4,11].

Finally, the fully nonlinear regime of Fig. 5 is discussed.
At about t � 200 electromagnetic turbulence starts to de-
velop in the whole interresonance region rs1 < r< rs3, as
can be seen in Fig. 6(a). The fluctuations flatten the q
profile through simultaneous magnetic reconnection in
the whole interresonance region. This partial collapse
(i.e., not involving the core) is essentially completed
around t � 220–230. A contour plot showing the situation
after the q profile was annularly flattened is given in
Fig. 6(b). An important property of an annular collapse
as the one shown in Fig. 6 is that nom � 1 islands needs to
form and therefore the displacement of the core plasma can
be rather small.

This phenomenon is similar to the experimentally ob-
served off-axis temperature collapses without precursor
oscillations. For example, Edwards et al. [12] reported
JET experiments where rapid sawtooth crashes without
evident precursor oscillations, but preceded by a partial
crash in an off-axis region, were observed.

A possible explanation for such phenomena was pro-
posed by Buratti et al. in terms of a ‘‘purely growing
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FIG. 5. Evolution of the m � 1 TTM for the q profile given in
Fig. 1. The perturbed kinetic and magnetic energies, denoted by
Ek and Em, are plotted in (a). The growth rates �k and �m given
in (b) are estimated from Ek and Em, and �max � maxf�lin�m�g is
the maximum growth rate in the spectrum in Fig. 2 for SHp �
106. The system reaches the fully nonlinear saturation in the
phase denoted as ‘‘annular collapse,’’ i.e., t > 200.
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FIG. 6. Upper and lower halves of  (top) and  (bottom) contour lines in the poloidal cross section during the annular collapse (a)
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precursor’’ [13]. However, the results in Fig. 6 show that, if
a q profile with relatively small interresonance distances
D12 and D23 is formed even temporarily, rapidly growing
nonlinear TTMs can also cause such partial crashes with-
out precursors.

Precursor-free partial collapses during the ramp phase of
compound sawtooth oscillations were also observed in
tokamak discharges with hollow q profiles [14–17], where
q � 1 DTMs can be expected. In analogy with the TTM
case discussed above, our results indicate that nonlinear
growth of q � 1 DTMs can lead to such a partial collapse.
In cases where the growth rate spectrum peaks at lower m
(e.g., due to larger Dij or higher SHp), we have also
observed partial collapses (i.e., collapses in the interreso-
nance region) after which the core displacement continues
to grow, which is similar to experimental observations
made in JET, given in Figs. 4(A)– 4(C) in Ref. [12].

In summary, our numerical simulations have shown that
the simultaneous excitation of unstable q � 1 TTMs with
highm and their subsequent nonlinear interactions lead to a
rapid onset of the m � 1 triple tearing mode, which quali-
tatively depicts the fast triggering of sawtooth crashes
observed in tokamak experiments. Similar behavior has
also been found in simulations of q � 1 DTMs. If more
than three q � 1 resonant surfaces are formed in a tokamak
discharge, we also expect similar multiple tearing modes
that grow rapidly with high poloidal mode numbers. We
have also presented a scenario, where the nonlinear evolu-
tion of many unstable TTMs leads to a partial collapse of a
sawtooth without being preceded by an m � 1 precursor.
Similar phenomena were observed during compound saw-
tooth oscillations in several experiments [12,14–17].
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