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Scaling Behavior for the Onset of Convection in a Colloidal Suspension
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We investigate the early stages of mass convection in a colloidal suspension at high solutal Rayleigh
number cRas. From the time evolution of shadowgraph images and by assuming a diffusive growth of the
boundary layers we obtain an indirect measurement of the concentration boundary layer thickness �� at
the onset of convection. We show that the dimensionless boundary layer thickness � � ��=d scales as
Ra�p

s , where Ras � cRas� is a modified solutal Rayleigh number for convection which accounts for the
actual density unbalance and d is the thickness of the sample layer. This scaling behavior is analogous to
that reported at steady state for turbulent convection in simple fluids. We find p � 0:35, a value
compatible with the exponent 1=3, reported for turbulent heat convection in simple fluids at steady state.
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The heat transfer in fluids at high Rayleigh numbers is a
widely debated problem whose basic features are still
unclear [1–4]. At large Rayleigh numbers the transferred
heat scales algebraically with the applied temperature dif-
ference �T. The dimensionless Rayleigh number Ra �
�g�Td3=
� is the ratio of the temperature-gradient-
generated buoyancy forces and viscous forces (here g is
the gravity acceleration, d is the sample thickness, � is the
thermal expansion coefficient of the fluid, � its kinematic
viscosity, and 
 its thermal diffusivity). The heat trans-
ferred is expressed by the dimensionless Nusselt number
Nu, which is the ratio between the actual heat flow to the
flow generated by heat conduction alone under the same
temperature difference.

At high Rayleigh numbers the convective flow becomes
turbulent and scaling applies: Nu� Rap. The value of the
scaling exponent p is still questioned. Reported values of p
range from 2=7 up to 1=3 (see for example [4] and refer-
ences therein). The imposition of a large temperature
difference creates two thermal boundary layers (BLs)
near the thermalizing plates, where the temperature is
strongly nonuniform. The heat transport properties in a
simple fluid at high Ra are completely determined by the
ratio � between the BL thickness �� and the sample height
d, as Nu ’ 1=�. Up to now measurements of scaling have
been performed under steady state conditions, when the
planform of the instability has been fully established.

In 1966 Howard, in a seminal paper on convection at
high Rayleigh numbers, described a gedanken experiment
to investigate the scaling of Nu at the onset of convection
[5]. He assumed that, after the imposition of a temperature
difference at t � 0, the initial stages are dominated by the
growth of the BL by means of heat conduction. The
determination of the conductive time t� needed to trigger
convection provided an estimate of �, which in turn pro-
vided an estimate of Nu.

The actual execution of this experiment is rather cum-
bersome, as it is very difficult to fulfill the ideal condition
where a temperature difference is imposed instantaneously.
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Near critical fluids represent an exception to this, because
the thermal diffusivity becomes small as the critical point
is approached. Close to the critical point, however, the fluid
becomes very compressible, and the time scale for the
onset of the instability is strongly influenced by the piston
effect [6,7].

In this work we have investigated the convective mass
transfer at high solutal Rayleigh numbers. By exploiting
the small diffusion coefficient of complex fluids we have
performed Howard’s experiment in a colloidal suspension
to investigate the convective destabilization of concentra-
tion BLs. Here the imposition of a temperature difference
induces a uniform mass flow due to the Soret effect [8].
The formal analogy between heat convection in the clas-
sical Rayleigh-Bénard instability and mass convection in a
Soret driven instability is dealt with in detail in [9,10]. The
mass flow promotes the diffusive growth of concentration
BLs, mass being accumulated at one boundary and de-
pleted from the other one. Because of the small diffusion
coefficient of the colloidal suspension used, the time scale
for the diffusive growth of the BLs is much larger than that
needed to establish the conductive temperature profile
across the sample. In this way, the initial phase where the
temperature profile is created almost instantaneously is
followed by a slower phase where the concentration BLs
grow diffusively. Therefore, by using a quantitative shad-
owgraph technique we are able to obtain a reliable deter-
mination of the concentration BL thickness �� at the onset
of convection from the diffusive time t� needed to trigger
the instability.

The determination of �� provides an indirect measure-
ment of the solutal Nusselt number Nus associated with the
mass transfer (also called Sherwood number) [11,12],
which mirrors the Nusselt number defined for simple flu-
ids. Nus is defined as the ratio between the mass transferred
due to convection and the mass transferred due to diffusion
in the absence of convection under the same concentration
difference. Here also the mass transfer properties are com-
pletely determined by �, and Nus ’ 1=� [11].
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We find that � scales as �� Ra�0:35
s in the solutal

Rayleigh number range 3:8� 105 < Ras < 5:8� 107,
where Ras is a modified solutal Rayleigh number which
accounts for the fact that convection is induced by impos-
ing a constant mass flow.

The scaling exponent is compatible with the value 1=3
originally suggested by Howard for the onset of convection
and with the exponent 1=3 reported under steady state
conditions for simple fluids [4] and for convection induced
by electrochemical mass transfer [13].

The imposition of a temperature difference to a binary
mixture induces a mass flow by means of the Soret effect
[14]. The Soret mass flow is JS � ��DSTc�1� c�rT,
where � is the density of the mixture, D its mass diffusion
coefficient, ST is the phenomenological Soret coefficient
and c is the weight fraction concentration of the denser
component. The Soret coefficient can be either positive or
negative, according to whether the denser component mi-
grates towards the colder or hotter plate. The overall mass
flow due to diffusion and to the Soret effect is J �
��Drc
 JS. Thereby at steady state, in the absence of
convection, a concentration gradient rc � �STc�1�
c�rT is generated within the mixture. The density gradient
associated with rc is r� � ��rc � ���STc�1�
c�rT, where � � ��1�@�=@c�T is the solutal expansion
coefficient. The mutual relevance of density variations
generated by thermal dilation and by concentration is ex-
pressed by the separation ratio 
 � �STc�1� c�=�. The
Rayleigh number for the Soret driven convection is the
solutal Rayleigh number

cRa s �
�gSTc�1� c��Td3

�D
� Ra




L
(1)

where L � D=
 is the Lewis number. The threshold con-
dition for mass convection in the presence of no-slip im-

permeable boundaries is cRas > 720 [15].

The solutal Rayleigh number cRas does not account for
the actual density imbalance present in the sample. In
general the choice of the appropriate Rayleigh number
depends on the boundary conditions. In the case of a simple
fluid, convection can be induced either by applying a
constant temperature difference �T or by letting a constant
heat flow through the fluid. The condition of constant �T
becomes relevant in the presence of boundaries whose
thermal conductivity is much higher than that of the layer
of fluid. Under this condition the appropriate Rayleigh
number is Ra, which is defined under a density unbalance
�� � ���T. The condition of convection induced by
applying a constant heat flow is relevant when the thermal
conductivity of the thermalizing plates is smaller than that
of the layer of fluid, as it becomes difficult to control the
temperature difference at the boundaries of the fluid. In this

case the Rayleigh number cRa � ��grTjz�0;dd4�=
� is
proportional to the heat flux at the boundaries Jb /
rTjz�0;d. The relation between the two Rayleigh numbers,
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recently derived by Otero et al. [16] is cRa � RaNu.
In the case of binary mixtures the boundaries are im-

permeable and convection is induced by a constant mass
flow JS, the concentration difference �c across the sample
being not determined a priori. By reexpressing the solutal

Rayleigh number cRas in terms of the concentration differ-
ence at the boundaries �c ’ STc�1� c�rT�d we findcRas � Ras=�, which mirrors the relation obtained by
Otero et al. for a simple fluid. Here Ras �

�g�cd3

�D is a
modified solutal Rayleigh number which accounts for the
actual density unbalance �� � ���c present across the
sample.

In this Letter we describe the Soret induced convection
in a colloidal suspension of 22 nm diameter spherical silica
particles (LUDOX TMA) dispersed in water at a weight
fraction concentration c � 4:1%. This suspension is char-
acterized by 
 � �3:41 and L � 1:48� 10�4 and con-
sequently, as indicated by Eq. (1), large solutal Rayleigh
numbers can be achieved.

The colloidal suspension is characterized by a negative
Soret coefficient ST � �0:047 K�1. This feature allows
convection to be induced by heating the fluid from above,
a condition which prevents the onset of the Rayleigh-
Bénard instability. Other physical properties are D �
2:2� 10�7 cm2=s, 
 � 1:48� 10�3 cm2=s, � � 3:03�
10�3 K�1, � � 8:18� 10�3 cm2=s, and � � 0:57.

The experimental investigation of the onset of the in-
stability requires the fast buildup of a large temperature
difference across the sample and a good optical accessibil-
ity. Measurements were performed with sample thick-
nesses of 1.0, 1.3, 2.0, 2.3, 2.9, and 4.5 mm. The rise
time of the applied temperature difference is about 35 s
to reach 64% of the set point. The thermal stability at
steady state is of the order of 1 mK=24 h for the average
temperature and of the order of 3 mK=h for the applied
temperature difference. The horizontal spatial uniformity
of the thermal gradient applied to the sample is of the order
of 3% across the observation window.

Images of the convecting fluid are generated by means of
a shadowgraph setup [17]. Shadowgraph is a heterodyne
technique where the field diffracted from concentration
modulations in the sample is recombined with the trans-
mitted beam onto a charge coupled device sensor. Since the
incoming beam is sent orthogonal to the sample, optical
gradients along the vertical axis do not produce any signal.
However, when convection sets in, horizontal gradients are
generated because of the three dimensional convecting
structures. The variance of an image of the sample h�I2i �
h�I�x; y� � hIi�2i is proportional to the mean square aver-
age of the concentration differences generated by convec-
tion. h�I2i provides a quantitative estimate of the turbidity
of the sample which would be very difficult by using other
techniques, due to the small wave vector of the excitations
involved. Moreover, our measurement procedure relies on
the estimate of dynamical changes in h�I2i, and this allows
a very efficient rejection of stray light at small wave
1-2
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vectors. A typical measurement sequence involves the
sudden imposition of a steady temperature difference to
the sample, followed by the acquisition of a sequence of
images at a rate of one image every five seconds. The
variance h�I2i of the intensity of each image is then
processed to obtain time sequences like those shown in
Fig. 1. The curves in Fig. 1 represent some of the different
runs obtained by changing the applied temperature differ-
ence. The temperature differences range from 3 K up to

38 K and the solutal Rayleigh numbers from cRas � 1:7�
106 up to 1:6� 109. At steady state the structure of the
planform is that of a spoke pattern at all the investigated
Rayleigh numbers [17,18].

The curves in Fig. 1 show some common features. After
the imposition of the temperature difference, h�I2i ’ 0 for
a long time. During this period the concentration gradients
develop uniformly close to the boundaries and the concen-
tration profile depends only on the vertical coordinate.
Accordingly, the BLs do not generate any signal. Then
the amplitude of the signal suddenly grows up to a maxi-
mum. After the maximum the signal exhibits damped
oscillations and eventually attains a steady value.

The most prominent feature of Fig. 1 is that convection
sets in within a time frame many orders of magnitude
smaller than the diffusive time tm � d2=D necessary to
create a concentration gradient across the cell thickness.
This is due to the fact that the mechanism for the onset of
convection is the rapid diffusive growth of the BLs, which
become unstable in a time much shorter than tm. Another
interesting feature of Fig. 1 is that h�I2i exhibits damped
relaxation oscillations. A similar behavior has been also
reported during the transient of Soret driven convection in
a water-ethanol mixture [18] and during the transient to
heat convection in compressible fluids [7,19]. The origin of
these oscillations is still debated and its discussion is
beyond the aim of this work.
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FIG. 1. Variance of shadow images sequences plotted as a
function of time. The cell thickness is d � 1:0 mm. The applied
temperature differences and solutal Rayleigh numbers corre-
spond to �T � 34:8 K and cRas � 1:84� 107 (solid line), �T �

23:75 K and cRas � 1:25� 107 (dashed line), and �T � 9:6 K

and cRas � 5:08� 106 (dotted line).
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In this Letter we focus on the investigation of the very
early stages of the instability where the BLs grow diffu-
sively until they are destabilized by convection.

The analysis of the results in Fig. 1 involves the deter-
mination of the diffusive time �� � t�=tm needed to trigger

the instability as a function of cRas. The time �� corre-
sponds to the point where the h�I2i signal in Fig. 1 starts to
grow, due to the development of concentration differences
generated by the convective flow. This indicates that the
BLs have grown slightly above their steady state value and
begin to develop bumps. The bumps grow due to the buoy-
ancy force, thus giving rise to the destabilization of the
BLs.

Figure 2 shows �� plotted as a function of cRas. The
continuous line represents the best power-law fit of the
data, yielding the exponent � � 0:52� 0:03 [20].

By assuming that the initial stages of convection are
dominated by the diffusive growth of the BLs, the concen-
tration gradient at the boundaries after the imposition of
the temperature difference is [21]

rc�z; �� ’ �STc�1� c�rT
�
1� erf

�
z=d
2

���
�

p

��
(2)

where the dimensionless time is � � t=tm.
The characteristic length scale associated with this con-

centration gradient profile is the BL thickness and is given
by [5]

���� � ����1=2: (3)

From Eq. (3) we are able to obtain an indirect estimate of
� from the latency time ��. The estimate of � also allows us

to derive the modified solutal Rayleigh number Ras �cRas�.
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FIG. 2. Latency time �� for the onset of the instability plotted
as a function of the solutal Rayleigh number cRas. The solid line
is the best fit of the experimental results yielding a power law
�� � 25:3cRa�0:52

s .

1-3



01
5

01
6

01
7

01
8

01
0

01
1

01
2

1/

aR s aR s

FIG. 3. Effective solutal Nusselt number 1=� plotted as a
function of the modified solutal Rayleigh number Ras. The solid
curve represents the best fit of the experimental results yielding a
power law 1=� � 0:051Ra0:35s .
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Figure 3 shows 1=� plotted as a function of Ra. The
fit of the experimental data yields a scaling relation
1=� � �0:051� 0:008�Ra0:35�0:03

s , represented by the con-
tinuous line in Fig. 3. The power-law exponent is compat-
ible with the value 1=3 suggested in the original gedanken
experiment by Howard.

The exponent 0:35� 0:03 is in good agreement with the
exponent 1=3 frequently reported for turbulent heat con-
vection in simple fluids at steady state [4]. Our experiment
was performed under extreme Schmidt number conditions
(Sc � �=D � 37 200), which mirror the large Prandtl
number (Pr � �=
) conditions in simple fluids. To our
knowledge, the only investigation of scaling properties of
the solutal Nusselt number Nus at very high Schmidt
numbers has been performed by Goldstein et al. [13].
These authors used an electrochemical mass transfer tech-
nique to determine the asymptotic behavior of Nus at
steady state in the solutal Rayleigh number range 108 <
Ras < 5� 1012 at a large Schmidt number, Sc � 2750.
They found the scaling relation Nus � 0:0659Ra1=3s . By
recalling that, as suggested by Howard, Nus � 1=� we are
in the position to compare this result with the scaling law
determined by us at the onset. The exponents are compat-
ible, both being in good quantitative agreement with the
value 1=3. The comparison of the prefactors is more diffi-
cult, as the Schmidt numbers used to perform the measure-
ments differ by about a factor 14. However, by neglecting
the dependence on Sc, the prefactors differ by about 30%.
The estimate of Nus at the onset leads therefore to values
bearing order of magnitude agreement with those esti-
mated at steady state [22].
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