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Two-Photon Imaging with Thermal Light
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We report the first experimental demonstration of two-photon imaging with a pseudothermal source.
Similarly to the case of entangled states, a two-photon Gaussian thin lens equation is observed, indicating
EPR type correlation in position. We introduce the concepts of two-photon coherent and two-photon
incoherent imaging. The differences between the entangled and the thermal cases are explained in terms of

these concepts.
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Two-photon imaging has been the subject of massive
studies since its first demonstration ten years ago [1,2]. In a
general sense two-photon imaging involves a joint detec-
tion of two photons at distant space-time points. The
radiation from a source is split into two separate optical
paths; placing an object (aperture) in one of the paths, the
spatial information of the object is recuperated in a non-
local fashion by means of the second-order correlation
measurement. The effect of two-photon imaging has been
brought to the general attention by an experiment that ex-
ploited the quantum entanglement nature of a photon pair
generated via spontaneous parametric down-conversion
(SPDC) [2]. In that experiment the signal and idler radia-
tion of SPDC were sent to two distant detectors. An aper-
ture and an imaging lens were placed in the signal arm of
the optical setup just before a bucket detector; there was
no optical element in the idler arm; however, by scanning
the idler detector in the plane defined by a two-photon
Gaussian thin lens equation, a sharp and magnified image
of the aperture was obtained in the coincidence counts,
even though the single counting rates of both detectors
were fairly constant during the scanning. This historical
experiment was named ghost imaging due to the fact that
the image of the object is formed by photons that never
actually pass through the aperture. Further investigations
on entangled photons brought to the development of a new
field, named two-photon geometric optics [3].

Recently it has been argued that classically correlated
light might mimic some features of the entangled photon
pairs in coincidence imaging setups [4]. Notice that the
possibility of simulating the two-photon imaging features
of entangled states with classical sources was not ruled out
by the authors of the original ghost imaging experiment
[2]. Both the theoretical work of Abourraddy et al. [5] and
the experimental investigation of Bennink et al. [4] stimu-
lated a very interesting debate about the role of entangle-
ment in two-photon coincidence imaging [6—11]. In
particular, Bennink et al. [4] have experimentally demon-
strated the possibility of performing far-field coincidence
imaging, i.e., measuring momentum correlation only, with
pairs of photons (pulses) classically correlated in momen-
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tum. Very recently Gatti et al. [12] have proposed thermal
(or pseudothermal) radiation as a classical source to per-
form near-field coincidence imaging, which measures po-
sition correlation (at least partially), in a specific optical
setup. Since then a great deal of attention on the subject has
been induced [13].

In this Letter we wish to present the first experimental
demonstration of two-photon ghost imaging with thermal
radiation. In particular, we show that a thermal source is
able to simulate one of the main features of entangled two-
photon imaging: the two-photon Gaussian thin lens equa-
tion, i.e., the EPR type correlation in position is partially
observable. The expression partially accounts for the re-
duced visibility of thermal two-photon images (50% con-
stant background). Furthermore, we introduce the concepts
of two-photon incoherent and two-photon coherent imag-
ing to explain the fundamental differences between ther-
mal and entangled two-photon imaging. Notice that the
thermal ghost image presented here is the first authentic
simulation of the quantum ghost image [2]. In fact, no
two-photon thin lens equation, which is a symbol of posi-
tion correlation, can be found by replacing SPDC with a
source of photons classically correlated in momentum [4].
Thermal sources provide an ideal comparison to quantum
ghost imaging effects for a more complete understanding
of two-photon, or two-particle, physics.

The behavior of entangled two-photon systems has been
well studied [14,15]. It is possible to establish an analogy
between classical optics and entangled two-photon optics:
the two-photon probability amplitude plays in entangled
two-photon processes the same role that the complex am-
plitude of the electric field plays in classical optics; the role
played by the intensity of the electromagnetic field in
classical optics is played by the rate of coincidence counts,
and therefore by the time integrated second-order correla-
tion function in entangled two-photon processes. For both
thermal source and SPDC, the two-photon thin lens equa-
tion is the result of the coupling of two-photon probability
amplitudes. However, for an SPDC source, one pair of pho-
tons contains all the two-photon probability amplitudes
that generate the ghost image; we define the result as
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two-photon coherent image. For a thermal source, instead,
the various two-photon probability amplitudes come from
the ensemble of many independent pairs that generates the
ghost image; thus, we define it as two-photon incoherent
image.

The experimental setup is shown in Fig. 1. After the
pseudothermal source [16,17], a nonpolarizing beam split-
ter (BS) splits the radiation in two distinct optical paths. In
the reflected arm an object, with transmission function
T(X,), is placed at a distance d, from the BS and a bucket
detector (D) is just behind the object. In the transmitted
arm an imaging lens, with focal length f, is placed at a
distance dp from the BS, and a multimode optical fiber
(then connected to detector D,) scans the transverse plane
at a distance d)y from the lens. The output pulses from the
two single photon counting detectors are then sent to an
electronic coincidence circuit to measure the rate of coin-
cidence counts.

The rate of coincidence counts is governed by the
second-order Glauber correlation function [18]:

G(z)(l‘p Flity, Fy) = <E(17)(f1, ?1)E(27)(t2, 72)
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where EC7) and E®) are the negative-frequency and the
positive-frequency field operators describing the detection
events at the space-time locations (7}, ;) and (7,, t,). The
transverse second-order correlation function (at equal
times) for a thermal source is given by [19]:
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where X; is the transverse position of detector D;, § and ¢’
are the transverse components of the momentum vectors,
and g;(X;; g) is the Green’s function associated with the
propagation of the field from the source to the i detector
[20]. Notice that there are two differences with respect to
the SPDC case: (1) the presence of a background noise
[first term of Eq. (2)], which does not exist for SPDC; (2)
the possibility of writing the second term of Eq. (2) as a
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FIG. 1 (color online). Experimental setup. Source diameter
~200 pwm; a = 125 mm; dy = 88 mm; dp = 212 mm; df =
268.5 mm f = 85 mm; fiber tip diameter = 60 wm.

product of first order correlation functions, G(llz)G(zll), while
the second-order correlation function for SPDC cannot be
reduced to a mere product of first order correlation func-
tions in any format.

For the setup of Fig. 1, it can be shown that for any
values of the distances d,, dp, and dj; which obey the
equation

1 1 1
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Eq. (2) can be simplified as [19]:
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where T(dA[ZIB X,) is the object transmission function
(T(X,)) reproduced on the D, plane. We can then conclude
that a thermal source allows reproducing in coincidence
measurements the ghost image of an object, similarly to the
SPDC case, except for a constant background noise. The
constant background noise, first term in Eq. (4), is propor-
tional to the total transmittance of the object and, therefore,
can be simplified to N, the number of transparent features
in the object plane [19]. Equation (3) can clearly be inter-
preted as a two-photon Gaussian thin lens equation, in
which the object distance is s, = dy — d4 and the image
distance is s; = d} (see Fig. 2). We expect to observe an
inverted image magnified by a factor of M = s;/s,,. Notice
that when only one slit is inserted in the object plane, the
maximum achievable visibility is 33%. The visibility, how-
ever, is expected to drop when the number of transparent
features increases.

The discovery of general laws in physics allows consid-
ering pictorial representations which may turn out to be
powerful but still simple predictive tools. In this sense
Klyshko’s pictures for SPDC imaging experiments [2,21]
are exemplar. The results presented in Eq. (3) and Eq. (4)
also offer the possibility of considering a generalized
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FIG. 2 (color online). Conceptual unfolded version of the
optical setup. Object plane and image plane obey a two-photon
Gaussian thin lens equation and are defined by s, = dy — d,
and s; = df, respectively. In terms of Klyshko’s picture, the
thermal source acts as a phase conjugated mirror forming a
pseudo-object in the o plane.
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Klyshko’s representation; nevertheless, the presence of two
terms in Eq. (4) makes the thermal Klyshko’s picture more
complex. For simplicity, in Fig. 2 we only picture the
second term of Eq. (4), which is the one that produces
the ghost image. Since the source is chaotic, each atom of
the source randomly emits photons with all possible values
of momentum. A photon with momentum ¢ arriving at X,
can produce a coincidence count with any other photon
emitted by the source and arriving at ¥,. These coinci-
dences result in a background noise that does not lead to
the production of an image. This part of the physical
process is not reflected in Fig. 2. Notice that, similarly to
the SPDC case, the point-to-point correspondence between
object and image plane is the result of the addition of two-
photon probability amplitudes. It is important to point out,
however, a remarkable difference between the thermal and
the SPDC case. In the Klyshko’s picture for SPDC each
pair of lines corresponds to a two-photon probability am-
plitude and all of them are associated to one pair, hence we
define the image two-photon coherent. In the diagram for
the thermal case each pair of lines represents the term
g1 (X1, ) X g5(Xy, g) and the various lines are associated
to different pairs of photons. It is apparent then that the thin
lens equation is the result of the coupling gj(X, §) X
g2(%,, g), but the image is generated by the ensemble of
many independent pairs, leading us to the definition of two-
photon incoherent image. The diagram of Fig. 2 also shows
that while in the Klyshko’s picture for SPDC the source
behaves as an ordinary mirror, here the thermal source
behaves as a phase conjugated mirror; this is due to the
definition of the object distance s, = dg — d,. This inter-
pretation indicates the presence of a pseudo-object in the
plane o, as shown in Fig. 2; scanning this plane the pseudo-
object was actually observed (see also Fig. 3).

Our first experimental measurement was aimed to ver-
ify the existence of a point-to-point correspondence be-
tween object and image plane, as expected by the exis-
tence of a thin lens equation. The setup is the same as that
of Fig. 1, but we used the 60 wm-diameter input aper-
ture of an optical fiber as the object (whose output was
then coupled to detector D). As a preliminary measure-
ment we studied the temporal second-order correlation
function. An optimized coincidence time window was
chosen accordingly. For the actual spatial correlation mea-
surement, we collected three sets of data for three different
positions of the fiber in the object plane; in every measure-
ment we kept the position of the fiber fixed and scanned
detector D, in the transverse direction. The results are
shown in Fig. 3: any shift of the fiber in the object plane
causes a shift of the correlation function in the opposite
direction, in analogy to standard geometrical optics. In
particular, Fig. 3 shows that by shifting the fiber in the
object plane by 2 mm the correlation function shifts by
4.3 mm. Hence, the magnification in the imaging plane is
M s = 2.15, which is very close to the expected value
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FIG. 3 (color online). Normalized second-order correlation
function vs position of D,. The measurement shows the point-
to-point correspondence between object and image planes.
(a) Tip of the fiber in the object plane located in the position
indicated by the square. (b) Tip of the fiber in the object plane
located in the position indicated by the circle (central position).
(c) Tip of the fiber in the object plane located in the position
indicated by the triangle.

(Mexpeet = 2.16). The achieved visibility is 26%. The re-
sults shown in Fig. 3 clearly show the point-to-point cor-
respondence between object and imaging plane in
agreement with Eq. (3) and Eq. (4).

Then we placed a double slit in the object plane (center
to center separation 1 mm, slit width 0.2 mm) and repeated
the measurement. The results are shown in Fig. 4. As
expected, the single counts are flat, while the coincidence
counts reproduce the magnified image of the double slit.
The visibility drops to about 12%.

The experimental data show that the visibility of the
two-photon image drops with the number of transparent
features in the object plane, as predicted in Eq. (4). This
effect is readily understood by inspecting Fig. 3: for each
feature in the object plane, the whole image plane shows
besides the expected image a non-negligible noise level.
Hence, if in the object plane there are simultaneously three
features, in the image plane we will observe the addition of
the three graphs of Fig. 3, as predicted by Eq. (4). This
clearly indicates that the background noise increases with
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FIG. 4 (color online). Single and coincidence counts vs trans-
verse position of D, in the image plane (x,). Single counts of
both D, (hollow circles) and D, (full circles) are flat. The
coincidence counts (solid line with circles) show a magnified
image of the object.

the number of transparent features to image at the expenses
of the visibility.

The physics behind quantum ghost image and thermal
ghost image can be understood as follows: in both cases the
image is the result of the addition of two-photon probabil-
ity amplitudes; nevertheless, such probability amplitudes
have very different origins in the two cases. In SPDC, a
signal-idler pair is described by a pure state given by the
superposition of an infinite number of two-photon proba-
bility amplitudes. On the other hand, thermal sources are
modeled as an incoherent statistical mixture of many pairs
of photons; the various two-photon probability amplitudes
are provided by the entire ensemble of photon pairs. The
different models come from the different processes in-
volved in the generation of SPDC and thermal radiation.
SPDC comes from a nonlinear coherent interaction and
consequently it is impossible to identify the birth place
of a photon pair. This is why each photon pair contains
simultaneously all the possible transverse momenta neces-
sary for imaging. On the other hand, for a thermal source
each photon is generated from a random excitation of
independent atoms. This is in line with the interpretation
of the two Klyshko’s pictures given above and clarifies
what we mean by two-photon coherent and two-photon
incoherent imaging.

In conclusion, we have presented the first experimental
demonstration of two-photon ghost imaging with thermal-
like sources. For the first time a two-photon Gaussian thin
lens equation is found for nonentangled sources, indicating
the existence of, at least partial, EPR type correlation in
position. We have also introduced the concepts of two-
photon coherent and two-photon incoherent imaging to
describe the different physics behind entangled and ther-
mal ghost imaging. The already poor visibility of the
thermal ghost image (max 33%) drops rapidly for compli-
cated apertures; therefore, practical applications of thermal

ghost imaging rely on the development of a detection
scheme that is insensitive to the background noise. Such
a detection scheme is now under development in our
laboratory.
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