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Hawking Radiation in Sonic Black Holes
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I present a microscopic description of Hawking radiation in sonic black holes. A one-dimensional
Fermi-degenerate liquid squeezed by a smooth barrier forms a transonic flow, a sonic analog of a black
hole. The quantum treatment of the noninteracting case establishes a close relationship between sonic
Hawking radiation and quantum tunneling through the barrier. Quasiparticle excitations appear at the
barrier and are then radiated with a thermal distribution in exact agreement with Hawking’s formula. The
signature of the radiation can be found in the dynamic structure factor, which can be measured in a
scattering experiment. The possibility for experimental verification of this new transport phenomenon for
ultracold atoms is discussed.
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Introduction.—One of the most fascinating effects in
astrophysics is Hawking’s prediction of black-hole radia-
tion [1]. Hawking realized that particles such as neutrinos
and photons could be created spontaneously from any
black hole and emitted at just the rate that one would
expect if the black hole is a body with a temperature
�h�=2�kB proportional to its surface gravity �. Although
Hawking’s prediction combines gravitation and quantum
mechanics to produce thermodynamics, it was rapidly
appreciated that the radiation predicted by Hawking is
more primitive and fundamental. A beautiful example of
this was pointed out by Unruh [2]: The propagation of
sound in a fluid or gas turning supersonic, such as in the
nozzle of a rocket engine, is similar to the propagation of a
scalar field close to a black hole. Using the same arguments
which lead to black-hole evaporation, Unruh predicted the
analog of Hawking radiation for sound waves in a moving
fluid.

Although Unruh’s prediction is not restricted a priori to
a specific fluid, superfluids immediately were considered
as the natural candidates for an experimental test of the
sonic analog of Hawking radiation. Superfluid helium II
has been the first system to be proposed for such an
investigation [3]. More recently atomic Bose-Einstein con-
densates have been considered, as they may offer a better
chance of experimental testing [4–6]. Transonic flows
could be also realized in one-dimensional (1D) systems
[5,7] and available 1D quantum systems, including ultra-
cold atoms in optical potentials and waveguides [8], could
be adapted to realize a sonic black hole and to investigate
the sonic analog of the elusive Hawking radiation.

Sonic Hawking radiation has not been considered so far
in systems of noninteracting fermions. It is the aim of this
Letter to show that indeed a 1D Fermi-degenerate non-
interacting gas that scatters against a very smooth potential
barrier provides a clear and straightforward quantum me-
chanical microscopic description of the sonic analog of
Hawking radiation. Sonic Hawking radiation is formed due
to quantum tunneling through the top of the potential
barrier. Particle-hole excitations are created at the barrier
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and are then radiated with a momentum distribution char-
acterized by a temperature in exact agreement with the
Hawking-Unruh formula [1,2,4]. Although the evolution of
the fluid’s flow is unitary, when the momentum distribution
is measured locally, for instance, through the measurement
of the dynamic structure factor, it is not distinguishable
from a thermal (and incoherent) distribution. The general
case of 1D quantum fluids as well as the possible relevance
for experiments is also discussed.

Part I. Microscopic description.—Consider a Fermi-
degenerate gas of particles moving in a sufficiently narrow
and smooth constriction such that their motion can be
considered 1D. Their stationary single-particle wave func-
tions can be written in the adiabatic approximation [9] as
��x; y; z� �  �x��0;x�y; z�, where �0;x�y; z� is the trans-
verse ground-state wave function with eigenenergy 0�x�.
 �x� satisfies a 1D Schrödinger equation ��� �h2=2m�@2x �
Vext�x�� �x� �  �x�, where Vext is an effective potential
that includes also the zero point energy 0�x� [10]. I assume
Vext very smooth and essentially nonzero only near its
maximum Vmax located at x � 0.

Consider a flow of particles coming from the left
and colliding against the potential Vext. Their particle’s
wave functions are given by scattering wave functions
asymptotically defined by   / �eikx� r��e�ikx����x��
t��eikx��x�, where  � �h2k2=2m is the energy eigenvalue
and r�� and t�� are the reflection and transmission am-
plitudes, respectively. The evolution of the particle flow is
unitary and the many-body wave function of the flow of
particles is represented in second quantization by

jfi �
Y

0�<max

ay j�i; (1)

where ay is the creation operator of  ’s and j�i is the
vaccum of particles. In this state all  ’s are occupied up to
an energy max, which is assumed higher than Vmax. The
noninteracting case is an ideal example of a fluid turning
supersonic (see below) where the microscopic wave func-
tion of the flow (1) is given from the beginning.
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Since the barrier potential is smooth the particle propa-
gation is semiclassical and in first approximation jt��j2 
��� Vmax�. Therefore the fluid maintains in a first ap-
proximation the sharp Fermi-degenerate character of the
local momentum (or velocity) distribution, which repre-
sents the ‘‘vacuum’’ of the black-hole sonic analog. This
allows us to describe the fluid dynamic with the standard
hydrodynamic equations. The velocities of the particles in
the fluid are uniformly distributed within an interval
�vL; vR�. Figure 1 shows an example of velocity distribu-
tion. The right Fermi velocity vR �

���������������������������������������
v2max � 2Vext�x�=m

p
is the velocity of a particle moving from the left to the right
with initial velocity higher than the classical threshold
velocity to go over the barrier vesc �

�������������������
2Vmax=m

p
. The left

Fermi velocity vL is the velocity of a particle starting from
the top of the barrier (located at x � 0); i.e., vL �

sgn�x�
�������������������������������������
v2esc � 2Vext�x�=m

p
. The sgn�x� function accounts

for the two possible different signs of the velocity that the
particle can have falling either to the right or left of the
barrier.

The flow velocity v � �vL � vR�=2 is the velocity
of a local reference frame from where the fluid appears
in equilibrium. Introducing the Fermi velocity vF �
��vL � vR�=2 as the Fermi velocity in the comoving
frame, the density is given by n � mvF=� �h. With these
definitions the current � � nv � mvvF=� �h is conserved
[11]. The Bernoulli equation v2=2� h� Vext=m � const,
where h�n� � �2 �h2n2=2m2 is the enthalpy (the Fermi en-
ergy divided by the particle mass), is satisfied with const �
v2esc=2� v2max=2. The sound velocity [c2 � ndh�n�=dn] is
consistently given by the Fermi velocity c � vF. It is easy
to verify that the above defined particle flow is a transonic
flow, namely, subsonic on the left of the barrier and super-
vR

vL

FIG. 1. Semiclassical velocity distribution as a function of the
coordinate x. Velocities are uniformly distributed in the area
limited by vR (top solid line) and vL (bottom solid line). Thinner
solid lines correspond to different classical trajectories of the
particles of the fluid. Here max � 2:5 and Vext � exp��x2� in
dimensionless units. The inset shows the Mach number v=c as a
function of position x.
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sonic on the right. The inset of Fig. 1 shows the behavior of
the Mach number v=c in the 1D channel.

Even if the potential barrier is very smooth, its finite
thickness near its top smears the semiclassical Fermi dis-
tributions at vL�x�. This is due to those particles colliding
against the barrier with energies comparable with Vmax.
The reflection probability is given by (see also [12])

jr��j2 �
1

1� exp�2��� Vmax�= �h!x�
; (2)

where !x is the frequency of the inverted harmonic oscil-
lator obtained expanding the barrier potential Vext �
Vmax �

1
2m!

2
xx2 � o�x3� around its maximum. Hawking’s

formula for a sonic black hole is given by [2,4]

TH �

�
�h

2�kB

�
d�v� c�
dx

; (3)

where the surface gravity � in Hawking temperature
� �h=2�kB is replaced by d�v� c�=dx. For the transonic
flow of fermions defined above d�v� c�=dx �
d�vL�=dx � !x and Hawking temperature (3) becomes

TH �
�h!x

2�kB
: (4)

Therefore the particles reflected from the barrier are dis-
tributed according to the reflection probability (2), which is
identical to a thermal Fermi distribution

nT;$�� �
1

1� exp���$�=kBT�
(5)

with a chemical potential $ � Vmax and a temperature in
exact agreement with Hawking temperature (4).

Consider a probe beam intersecting our 1D flow in a
region quite far from the barrier. The measurement of the
differential scattering cross sections with the probe beam
allows obtaining the dynamic structure factor [13], which
can be used to investigate Hawking radiation. The dynamic
structure factor is defined as S�q;!� � �l�fhfj(qjli�
hlj(y

q jfi)�!�!l�, where !l � �El � Ef�= �h and El are
the excitation frequencies and the energies of the eigen-
states jli, respectively. Positive (negative) frequencies in
S�q;!� are related to absorption (release) of energy from
the system. (y

q �
P
ie
iq�xi�Rp�e��xi�Rp�2=L2p is a density op-

erator defined locally where Lp � 1=q. Here Lp and Rp
are the size and the position of the region where the probe
beam and the system beam interact, respectively [14].

The dynamic structure factor of the flow is given in the
subsonic region by

S�q;!� � Seq0;$R
�q;!��

�
!
q

�
� SeqTH;$L

�q;!��
�
�
!
q

�
(6)

and in the supersonic region by

S�q;!� � �Seq0;$R
�q;!� � SeqTH;$L

�q;�!���
�
!
q

�
; (7)

where $L�Vmax and $R�max. S
eq
T;$�q;!� is the dy-
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namic structure factor of an equilibrium 1D Fermi gas
at temperature T and chemical potential $ given by
SeqT;$�q;!� �

Leffm
4� �h2q

e �h!=kBT=fcosh� �h!=kBT� � cosh��m!
2

2q2
�

�h2q2

8m �$�=kBT�g, where Leff �
���������
�=2

p
Lp is an effective

length of the probe-system interaction region [14]. Its

T � 0 limit is given by Seq0;$�q;!� �
Leffm
2� �h2q���!� �h2q2

2m �
�h2qkoF
m ���!� �h2q2

2m �
�h2qkoF
m � with koF �

�����������
2m$

p
= �h.

Because of the Pauli exclusion principle and the one
dimensionality, which disconnects the Fermi ‘‘surface’’
into two points (represented by vL and vR), S�q;!� has a
typical peak structure, which contrasts the noninteracting
two and three dimensional cases [13]. The peaks are re-
lated to the dispersion relation !�q� � �vLjqj���q� �
vRjqj��q� valid for small q. In the supersonic region !�q�
is negative for q < 0 meaning that small perturbations
propagate always to the right. Figure 2 shows the typical
behavior of S�q;!�. The broad peaks in Fig. 2 correspond
to the negative-q branch of the dispersion relation !�q� �
�vLjqj. In contrast the sharp peaks in the top of Fig. 2
correspond to the dispersion relation !�q� � vRjqj, which
is not broadened by the tunneling through the barrier. The
characteristic wave vector of Hawking radiation is qc �
kBTH= �hc� 1=2�2l2xn, where lx �

����������������
m= �h!x

p
and n is the

density. Indeed at very low frequencies �h!� kBTH and
momentum S�q;!� is dominated by Hawking radiation.
The peak values at j!j � jvLqj tend to 1=4 of the corre-
sponding zero-temperature value Leffm=2� �h3q but with a
half-width �! � 1:76qkBTH=mvL, which is much larger
than the corresponding half-width �! � �hq2=2m of the
zero-temperature contribution.
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FIG. 2. Sonic Hawking radiation can be detected through the
measurement of S�q;!�. Shown is the ! dependence of S�q;!�
in the subsonic (left) and supersonic (right) regions and for a
positive (top) and a negative (bottom) value of q. Here kBTH �
0:15Vmax, max � 2:5Vmax, and jqj � 0:05mvesc= �h is chosen in
the region of small q where thermal-like transitions (broadened
peaks) dominate over the zero-temperature contributions (step-
like peaks). S�q;!� is in units of Leffm=2� �h3q and ! is in units
of Vmax= �h.
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The experimental observation of the widths of these
peaks would provide a measure of Hawking temperature.
Degenerate Fermi atoms have been only recently obtained
[15]. Lithium can have a degeneracy temperature as high as
8 $K, which fixes the scale of max. A reservoir of degen-
erate lithium could be connected to nontrapped states with
a 1D channel realized by optical potentials or waveguides
[16]. The barrier potential could be created by a far-blue-
detuned laser sheet propagating in a direction orthogonal to
that of the flow propagation and tightly focused with a
waist (1=e2) of twice the laser wavelength (760 nm).
Hawking temperature would be of order of TH � 200 nK
and the characteristic wavelength of Hawking radiation ,c
of order of 40 $m.

The dynamic structure factor S�q;!� in the subsonic
region is equivalent to that of a 1D channel connecting
two reservoirs at temperatures T � 0 on the left and T �
TH on the right. This is the analog of Hawking radiation
from a black hole into the surrounding zero-temperature
space. To distinguish between this pure quantum state and
a mixed thermal state would require the measurement of
correlations such as those between opposite sides of the
barrier. Correlated pairs of quasiparticles (particle hole),
the ‘‘real’’ particles in an effective low-energy description,
are created at the barrier and evolve in opposite directions.

The interpretation of the Hawking radiation as related to
a tunnel effect is in agreement with a recent derivation of
the Hawking radiation as a tunneling process of particles in
a dynamical geometry due to Parikh and Wilczek [17]. A
relationship with a generalized form of diffraction has been
pointed out by Sanchez [18]. Moreover, electric pair pro-
duction in a strong static electric field is related to a similar
tunneling through an inverted harmonic oscillator [19]. As
quantum tunneling is very sensitive to the details of the
potential barrier, the distribution of radiated quasiparticles,
related to the reflection coefficient of the barrier, can be
different from (2). In particular, this suggests the possibil-
ity that some information on the supersonic part of the fluid
(the analog of the classical forbidden region of a black
hole) is carried by the radiation.

Part II. 1D quantum fluids.—Hawking’s prediction is,
in principle, valid also for strongly correlated 1D sys-
tems, such as the Tonks and Lieb-Liniger gases [20],
which are currently a subject of intense interest [8] and
electrons in clean short quantum wires [9,21]. Using stan-
dard hydrodynamics of 1D flow, it is possible to rewrite
Hawking temperature (3) in a more general form [22] as
TH � - �h!x=2�kB, where - is defined by

- �

����������������������������������������
3

4
�
1

4

�
n
d2h

dn2

�
dh
dn

�s
; (8)

where h�n� and n are the enthalpy and the density, respec-
tively. In general - is only weakly dependent on the form
of the function enthalpy h�n� and Hawking temperature is
basically proportional to a quantity that is related to the
2-3
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propagation of a single particle of the fluid in the vicinity
of the horizon. In the case of a noninteracting degenerate
1D Fermi gas considered here, - is equal to 1 since the
enthalpy is proportional to the square of the density. In the
case of a 1D Bose gas, - is equal to

��������
3=4

p
in the mean-field

regime [7] since the enthalpy is linear in the density and is
equal to 1 in the Tonks-Girardeau limit [20] since the
enthalpy is identical to that of a Fermi-degenerate gas in
that limit. In addition to the importance of testing some
aspects of black-hole evaporation, sonic Hawking radiation
would be a remarkable transport phenomena in these
strongly correlated quantum fluids and could be used to
investigate their properties.

A quite different 1D system where one may consider to
experimentally realize a sonic black hole and to test
Hawking radiation would be a system of charged particles,
like electrons in quantum wires, or ions in elongated traps.
The long-range part of the Coulomb interaction could
substantially renormalize the Hawking temperature in
long wires in a similar way to how it does for the scattering
from an impurity [21].

Conclusion.—A Fermi-degenerate flow of particles
propagating in a 1D channel in the presence of a smooth
effective barrier provides an exact solvable quantum me-
chanical model for the sonic analog of Hawking radiation.
The agreement with Hawking’s calculation is obtained in
the limit of a very smooth barrier, which is the equivalent in
Hawking’s derivation to a slowly evolving event horizon.
The thermal and incoherent characteristic of Hawking
radiation is discussed in terms of a measurable quantity
such as the dynamic structure factor.
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