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Nonlinear Amplification of Small Spin Precession Using Long-Range Dipolar Interactions
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In measurements of small signals using spin precession the precession angle usually grows linearly in
time. We show that a dynamic instability caused by spin interactions can lead to an exponentially growing
spin-precession angle, amplifying small signals and raising them above the noise level of a detection
system. We demonstrate amplification by a factor of greater than 8 of a spin-precession signal due to a
small magnetic field gradient in a spherical cell filled with hyperpolarized liquid 129Xe. This technique can
improve the sensitivity in many measurements that are limited by the noise of the detection system, rather
than the fundamental spin-projection noise.
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Observation of spin-precession signals forms the basis
of such prevalent experimental techniques as NMR and
EPR. It is also used in searches for physics beyond the
standard model [1–4] and sensitive magnetometery [5].
Hence, there is significant interest in the development of
general techniques for increasing the sensitivity of spin-
precession measurements. Several methods for reducing
spin-projection noise using quantum nondemolition mea-
surements have been explored [6,7], and it has been shown
that in some cases they can lead to improvements in
sensitivity [8,9]. In this Letter we demonstrate a different
technique that increases the sensitivity by amplifying the
spin-precession signal rather than reducing the noise.

The amplification technique is based on the exponential
growth of the spin-precession angle in systems with a
dynamic instability caused by collective spin interactions.
Such instabilities can be caused by a variety of interactions,
for example, magnetic dipolar fields in a nuclear-spin-
polarized liquid [10–12] or electron-spin-polarized gas
[13], spin-exchange collisions in an alkali-metal vapor
[14], or mixtures of alkali-metal and noble-gas atoms
[15]. This amplification technique can be used in a search
for a permanent electric dipole moment in liquid 129Xe
[16]. It is also likely to find applications in a variety of
other systems with strong dipolar interactions, such as cold
atomic gases [17] and polar molecules [18].

Consider first an ensemble of noninteracting spins with a
gyromagnetic ratio � initially polarized in the x̂ direction
and precessing in a small magnetic field Bz. The spin-
precession signal hSyi � �hSxiBzt grows linearly in time
for �Bzt � 1. The measurement time tm is usually limited
by spin-relaxation processes and determines, together with
the precision of spin measurements 	�hSyi�, the sensitivity
to the magnetic field Bz,

	Bz �
	�hSyi�

�hSxitm
; (1)

or any other interaction coupling to the spins. In the
presence of a dynamic instability, the initial spin preces-
sion away from a point of unstable equilibrium can be
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generally written as hSyi � �hSxiBz sinh��t�=�, where �
is a growth rate characterizing the strength of spin inter-
actions. The measurement uncertainty is now given by

	Bz �
	�hSyi��

�hSxi sinh��tm�
: (2)

Hence, for the same uncertainty in the measurement of
hSyi, the sensitivity to Bz is improved by a factor of G �

sinh��tm�=�tm. It will be shown that quantum (as well as
nonquantum) fluctuations of hSyi are also amplified, so this
technique cannot be used to increase the sensitivity in
measurements limited by the spin-projection noise.
However, the majority of experiments are not limited by
quantum fluctuations. For a small number of spins the
detector sensitivity is usually insufficient to measure the
spin-projection noise of N1=2 spins, while for a large
number of particles the dynamic range of the measurement
system is often insufficient to measure a signal with a
fractional uncertainty of N�1=2. Amplifying the spin-
precession signal before detection reduces the require-
ments for both the sensitivity and the dynamic range of
the measurement system. While electron spins can be
efficiently detected using optical or magnetic microscopy
methods, detection of nuclear spins is usually much less
efficient and would particularly benefit from nonlinear
amplification.

Here we use long-range magnetic dipolar interactions
between nuclear spins that lead to exponential amplifica-
tion of spin precession due to a magnetic field gradient
[11,16,19]. It has also been shown that long-range dipolar
fields in conjunction with radiation damping due to cou-
pling with an NMR coil lead to an increased sensitivity to
initial conditions and chaos [20]. To amplify a small spin-
precession signal above detector noise it is important that
the dynamic instability involves only spin interactions,
since instabilities caused by the feedback from the detec-
tion system would couple the detector noise, such as the
Johnson noise of the NMR coil, back to the spins. We
measure spin precession using SQUID magnetometers
that do not have a significant backreaction on the spins
1-1  2005 The American Physical Society
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and show that under well controlled experimental condi-
tions the dynamic instability due to collective spin inter-
actions can be used to amplify small spin-precession
signals in a predictable way.

Our measurements are performed in a spherical cell
containing hyperpolarized liquid 129Xe (Fig. 1). Liquid
129Xe has a remarkably long spin-relaxation time [16]
and the spin dynamics is dominated by the effects of
long-range magnetic dipolar fields. In the spherical geome-
try an analytic solution can be found using a perturbation
expansion in a nearly uniform magnetic field H0 [16,21].
We are primarily interested in the first-order longitudinal
magnetic field gradient g, H � �H0 � gz�ẑ, but will also
consider other magnetic field gradients which inevitably
arise due to experimental imperfections. For longitudinal
gradients that preserve cylindrical symmetry the magneti-
zation profile can be expanded in a Taylor series,

M �r; t� � M0 �M0

X

i;k

m�i;k��t�
zi�x2 � y2�k

Ri�2k ; (3)

where R is the radius of the cell. Only gradients of the
magnetization create dipolar fields in a spherical cell; for
example, a linear magnetization gradient m�1;0� creates
only a linear dipolar magnetic field, which, in the rotating
frame, is given by

B �1;0�
d �

8�M0z
15R

fm�1;0�
x ; m�1;0�

y ;�2m�1;0�
z g: (4)

The time evolution of the magnetization is determined by
the Bloch equations dM=dt � �M� �Bd �H�. If the
magnetization is nearly uniform, m�i;k� � 1, they can be
reduced to a system of linear first-order differential equa-
tions for m�i;k�.

We consider first the simplest case when only the linear
field gradient g is present and the initial uniform magne-
tization M0 is tipped into the x̂ direction of the rotating
frame by a �=2 pulse. Substituting Eqs. (3) and (4) into the
FIG. 1. Low field NMR setup (view from above). Polarized
liquid 129Xe is contained in a spherical cell maintained at 173 K
by flowing N2 gas through a vacuum insulated column. High-Tc
SQUIDs are submerged in LN2 contained in a glass Dewar.
Inset: configuration of the SQUIDs, applied magnetic field, the
magnetization, and the rotatable membrane.
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Bloch equations we find that only linear magnetization
gradients grow as long as m�i;k� � 1, in particular,

m�1;0�
y �t� � �

�gR
�

sinh��t�; (5)

� �
8

���
2

p
�

15
M0�: (6)

Here � is proportional to the strength of the long-range
dipolar interactions. We measure m�1;0�

y experimentally by
placing two SQUID detectors near the spherical cell as
illustrated in Fig. 1 and measuring the phase difference ��
between the NMR signals induced in the two SQUIDs. For
small m�1;0�

y , �� � �m�1;0�
y , where � is a numerical factor

that depends on the geometry, for our dimensions � �
0:46
 0:01. The phase difference �� is proportional to
the applied magnetic field gradient g and grows exponen-
tially in time, increasing the sensitivity to g by a factor
G � sinh��t�=�t. For M0 � 100 �G, which is easy to
realize experimentally with hyperpolarized 129Xe, � �
1:75 sec�1, so that a large amplification factor can be
achieved in a short time; for example, G � 360 after 5 sec.

One of the main challenges to realizing such high gains
is to achieve sufficient control over the initial conditions
and nonlinear evolution of the system, so that the dynamic
instability gives rise to a phase difference �� that remains
proportional to g even in the presence of various experi-
mental imperfections. We developed a set of numerical and
analytical methods for analyzing these effects [21]. Since
our goal is to achieve very high sensitivity to a small first-
order longitudinal magnetic field gradient g, we generally
assume that it is smaller than other gradients that are not
measured directly. We find that the presence of transverse
or higher order longitudinal gradients as well as initial
magnetization inhomogeneities causes an abrupt nonlinear
decay of the overall magnetization. The time until the
decay tc depends on the size of the inhomogeneities rela-
tive to M0 and limits the achievable gain to sinh��tc�=�tc.
Inhomogeneities of the applied field symmetric with re-
spect to the z direction do not change the evolution of ��,
which remains proportional to g until the collapse of the
magnetization, as shown in Fig. 2(a). Higher order z-odd
longitudinal gradients do generate a phase difference
[Fig. 2(b)]. However, the contributions of different mag-
netic field gradients to the phase difference add linearly as
long as m�i;k� � 1, and the effects of higher order odd
gradients can be subtracted if they remain constant, as
illustrated in Fig. 2(b). While higher order magnetization
gradients can grow with a time constant up to 2.5 times
faster than the first-order gradient, it can be shown using a
perturbation expansion that the first moment of the mag-
netization d �

R
zMydV always grows with an exponential

constant given by Eq. (6) and is proportional to the first
moment of the magnetic field b �

R
zBzdV. The phase

difference between the SQUID signals is approximately
1-2
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FIG. 3. (a) Oscillating transverse magnetization following a
�=2 pulse. After the signal drops to 90% of its initial value a
second pulse is applied to realign the magnetization with the
longitudinal direction. (b) Phase difference between the SQUID
signals. Overlaying the data (dashed line) is a fit based on
Eq. (5). The dash-dotted line is the expected phase evolution
in the noninteracting case, illustrating that the signal would
barely be detectable.
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FIG. 2. Numerical simulations [21] of the SQUID signal (left
axis) and the phase difference between SQUIDs (right axis) for
M0 � 100 �G and a small longitudinal field gradient g �
0:1 �G=cm (solid lines). (a) An additional larger transverse
gradient g? � 2 �G=cm (dashed line) or a second-order longi-
tudinal gradient g2 � 1 �G=cm2 (dash-dotted line) do not affect
the phase difference until the SQUID signal begins to decay.
(b) Effects of an additional z-odd third-order longitudinal gra-
dient g3 � 0:8 �G=cm3 (squares). Stars show the phase evolu-
tion in the presence of g3 but for g � 0. The difference between
the phase for g � 0:1 �G=cm and g � 0 (triangles) follows the
solid line corresponding to the pure linear gradient g until the
magnetization begins to collapse. The third-order gradient gen-
erates a background phase that can be subtracted to determine a
change in g between successive measurements.
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proportional to the first moment of the magnetization d.
For example, in Fig. 2(b) the overall signal decays at about
3 sec due to large first- and third-order magnetization
gradients, but their contributions to the phase difference
largely cancel and �� remains much less than 1.

Hence, the phase difference �� can be used to measure
a very small linear gradient g in the presence of larger
inhomogeneities if all magnetic field and magnetization
inhomogeneities are much smaller than M0. The ultimate
sensitivity is limited by fluctuations of the gradients be-
tween successive measurements. In addition to fluctuations
of g, which is the quantity being measured, the phase
difference will be affected by the fluctuations in the initial
magnetization gradients m�1;0�

y and m�1;0�
z and, to a smaller

degree, higher order z-odd gradients of the magnetic field
and the magnetization. In particular, fluctuations of m�1;0�

y

and m�1;0�
z , due to either spin-projection noise or experi-

mental imperfections, set a limit on the magnetic field
gradient sensitivity on the order of 	g �

8�
���
2

p
M0	m

�1;0�
y =15R and similar for 	m�1;0�

z . For liquid
129Xe the spin projection noise corresponds to a magnetic
field gradient of about 10�13 G=cm.

Hyperpolarized 129Xe is produced using the standard
method of spin-exchange optical pumping [16,22]. The
polarized gas is condensed in a spherical glass cell held
at 173 K as shown in Fig. 1. The cell, with an inner radius
R � 0:55 cm, is constructed from two concave hemi-
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spherical lenses glued together with UV curing cement.
Inside the cell is an octagonal silicon membrane 25 �m
thick, with a diameter of 1.05 cm. The membrane is con-
nected to a stepper motor outside the magnetic shields via a
0.2 mm glass wire to mix the sample, ensuring uniformity
of the polarization. In addition to mixing the sample, the
membrane inhibits convection across the cell due to small
temperature gradients which can wash out the longitudinal
gradient of the magnetization. A set of coils inside the
shields create a 10 mG uniform magnetic field and allow
application of rf pulses and control of linear and quadratic
magnetic field gradients. The NMR signal is detected using
high-Tc SQUID detectors. The pickup coil of each SQUID
detector is an 8� 8 mm square loop located approxi-
mately 1.6 cm from the center of the cell and tilted by

45� relative to the magnetic field.

In our experimental system, the time scale of the dipolar
interactions is much smaller than the spin-relaxation time
or the time needed to polarize a fresh sample of 129Xe. In
order to make multiple measurements on a single sample of
polarized xenon, we first apply a �=2 pulse and monitor in
real time the SQUID signals. When the NMR signal drops
to 90% of its initial value, a second �=2 pulse is applied,
realigning the magnetization with the holding field. The
silicon membrane is then oscillated back and forth to erase
the magnetization inhomogeneities developed in the pre-
vious trial.

Figure 3(a) shows the oscillating transverse magnetiza-
tion and Fig. 3(b) shows the phase difference between the
two SQUID signals. We determine the value of � from the
magnitude of the NMR signal and fit the phase difference
to Eq. (5) with g as the only free parameter. The dash-
1-3
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FIG. 4. (a) Measurement of a small gradient g alternated
between successive trials. Stars show the applied linear gradient;
squares show the gradient measured using nonlinear spin evo-
lution. (b) Gain G associated with nonlinear spin evolution. The
gain drops when the sample is not mixed in the shaded region,
demonstrating the significance of initial magnetization inhomo-
geneities.
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dotted line shows the expected evolution of the phase
difference for the same gradient in the absence of dipolar
interactions, demonstrating that without amplification the
phase difference would be barely above the noise level of
the detection system. For this measurement the phase is
amplified by a factor of 9.5 before the magnetization drops
to 90% of its initial value.

By applying a series of double �=2 pulses we can make
repeated measurements of the magnetic field gradient.
Figure 4(a) shows data where the applied longitudinal
gradient is oscillated with an amplitude of 1 �G=cm be-
tween trials. The stars show the applied gradient; the
squares show the gradient measured by the nonlinear spin
evolution, indicating that the amplified signal follows the
applied gradient. Slight differences between the two curves
are due to noise in the magnetic field gradient as well as
possible imperfections in the erasing of magnetization
gradients between successive trials. Figure 4(b) shows
the gain parameter for the same data set. We associate
the rising gain at the beginning of the data set with a decay
of the magnetization inhomogeneities developed during
the collection of liquid 129Xe in the cell. In the shaded
region of the plot we did not mix the magnetization with
the membrane before the measurement, resulting in a drop
of the gain as well. Numerical simulations indicate that the
gain is likely limited by higher order gradients, for ex-
ample, a second-order magnetic field gradient on the order
of 1 �G=cm2, which cannot be excluded based on our
mapping of ambient fields, is sufficient to limit the gain
to about 10.
06080
In conclusion, we have demonstrated that nonlinear
dynamics arising from long-range dipolar interactions
can be used to amplify small spin-precession signals, im-
proving the signal-to-noise ratio under conditions where
limitations of the spin detection system dominate the spin-
projection noise. By amplifying the signal before detec-
tion, this technique reduces the requirements on the sensi-
tivity of the detection technique as well as its dynamic
range. In addition to precision measurements, this tech-
nique can potentially be used to amplify small spin-
precession signals in various MRI applications, allowing,
for example, direct detection and imaging of the magnetic
fields generated by neurons with MRI [23].
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