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Entropy, Entanglement, and Area: Analytical Results for Harmonic Lattice Systems
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We revisit the question of the relation between entanglement, entropy, and area for harmonic lattice
Hamiltonians corresponding to discrete versions of real free Klein-Gordon fields. For the ground state of
the d-dimensional cubic harmonic lattice we establish a strict relationship between the surface area of a
distinguished hypercube and the degree of entanglement between the hypercube and the rest of the lattice
analytically, without resorting to numerical means. We outline extensions of these results to longer ranged
interactions, finite temperatures, and for classical correlations in classical harmonic lattice systems. These
findings further suggest that the tools of quantum information science may help in establishing results in
quantum field theory that were previously less accessible.
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Imagine a distinguished geometrical region of a discre-
tized free quantum Klein-Gordon field: What is the entropy
associated with a pure state obtained by tracing over the
field variables outside the region? How does this entropy
relate to properties of the region, such as volume and
boundary area? These innocent-looking questions pose a
long-standing issue indeed, studied in the literature under
the key word of ‘‘geometric entropy.’’ Analytical steps
supplemented by numerical computations for half spaces
and spherical configurations in the seminal works by
Bombelli et al. [1] and Srednicki [2] strongly suggested a
direct connection between entropy and area. The interest in
this quantity for quantum field theory was originally drawn
from the fact that geometric entropy is a candidate for the
Bekenstein-Hawking black hole entropy [3]. Subsequent
work employed various approaches, such as methods from
conformal field theory [4], analysis of entropy subadditiv-
ity [5], or mode counting [6]. While the connection to the
black hole entropy and other concepts such as the holo-
graphic bound has not been fully clarified yet [7], the
connection between entanglement and area in nongravitat-
ing systems is interesting in itself. Recently, there has been
renewed interest in studying entanglement and correlations
in quantum many-body systems and quantum field theory,
largely due to the availability of novel powerful methods
from the quantitative theory of entanglement in the context
of quantum information theory [8–14]. Such ideas have
previously been employed to assess the entanglement in
settings of one-dimensional spin (see, e.g., Refs. [13,14])
and harmonic chains [10,12].

The analysis in this Letter is based on methods that have
been developed in recent years in quantum information
theory, in particular, those relating to entanglement in
Gaussian (quasifree) states (see, e.g., Ref. [15]). These
methods allow us to give an analytical answer to the
question of the scaling of the degree of entanglement
between a region and its exterior for harmonic lattice
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Hamiltonians such as discrete versions of the free scalar
Klein-Gordon field, in arbitrary spatial dimensions. It is
remarkable that although we encounter a highly correlated
system, we nevertheless find an ‘‘area dependence’’ of the
degree of entanglement.

The Hamiltonian.—The starting point of the argument is
a discrete lattice version of a free real scalar quantum field.
For any d � 1 we consider a d-dimensional simple cubic
lattice n�d comprising nd oscillators. Denoting the canoni-
cal coordinates of the system by x � �x1; . . . ; xnd� and p �
�p1; . . . ; pnd� we may write the Hamiltonian as

H � ppT=2� xVxT=2: (1)

The nd � nd matrix V, the potential matrix, specifies the
coupling between the oscillators in the position coordi-
nates. For now we chose V such that in the continuum
limit one obtains the Hamiltonian of the real Klein-Gordon
field. We therefore consider the harmonic lattice
Hamiltonian with nearest-neighbor interaction. The case
of next-to-nearest-neighbor coupling is discussed later in
this Letter. For a discussion of more general types of
interactions, see Ref. [16].

We write V � circ�v� for the circulant matrix whose first
row is given by the n-tupel v, and also for a block-circulant
matrix where the first block column is specified by a tupel
of matrices. So in d � 1 we have V1 � circ�1;
�c; 0; . . . ; 0;�c�, and in higher dimensions we have,
with 0 � c < 1=�2d�, a recursive, block-circulant structure
reflecting rows, layers, etc., Vd � circ�Vd�1;�c1nd�1 ;
0; . . . ; 0;�c1nd�1�. From now on we write V instead of Vd.

Entanglement and area dependence.—We denote the
ground state of the system by �. For a distinguished cubic
region m�d in a lattice n�d (see Fig. 1) its entropy of
entanglement is En;m � �tr�n;m log�n;m. The reduced
density matrix �n;m is formed by tracing out the variables
outside the region m�d. We show that
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FIG. 1. The harmonic lattice in d � 2 with a distinguished
m�m region in an n� n lattice.
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The entropy of entanglement of the distinguished region
m�d in the lattice n�d satisfies limn!1En;m � ��md�1�,
where � is the Landau theta. More specifically, we have
that C1m

d�1 � En;m � C2m
d�1 for sufficiently large m,

with appropriate C1; C2 > 0.
The area dependence manifests itself as follows: For a

linear chain, the entropy of entanglement is bounded by
quantities that are independent of the size of the distin-
guished interval. In two dimensions, this dependence is
linear in the length of the boundary, and in three dimen-
sions to the area of the boundary. Indeed, one can show that
while all oscillators are correlated with all oscillators, the
correlations over the boundary decay very quickly. In
effect, for fixed interaction strength [17], the only signifi-
cant contribution comes from within a finite width, the
correlation length, along the boundary, and thus leads to
a surface dependence of the correlations. This intuition
forms the basis of the following, fully analytical proof.

The upper bound.—The ground state � of the coupled
harmonic system in Eq. (1) is a Gaussian (quasifree) state
with vanishing first moments. The second moments of �
can be collected in the covariance matrix �, which is
defined as �j;k � 2Re�RjRk�� for j; k � 1; . . . ; 2nd, where
R � �x;p� is the vector of canonical coordinates. In terms
of the potential matrix V the covariance matrix of the
ground state is then found to be � � V�1=2 
 V1=2 [10].
From entanglement theory we know that an upper bound
for the entropy of entanglement is provided by the loga-
rithmic negativity EN � lnk��ktr, where �� is the partial
transpose of �, and k � ktr denotes the trace norm [18].
Following Ref. [10] we find

EN �
Xnd
j�1

lnf1�max�0; �j�Q� 1��g; (2)

where �j�Q� are the nonincreasingly ordered eigenvalues
of the matrix

Q � V�1=2PV1=2P: (3)

In a reordered list of canonical coordinates (such that the
inner oscillators are counted first) P is the diagonal matrix
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P � �1md 
 1nd�md and we define

V�1=2�
A B
BT C

� �
; V1=2�

D E
ET F

� �
; T�

0 E
ET 0

� �
:

The matrices B and E describe the couplings between the
md oscillators forming the distinguished hypercube and the
rest of the lattice. Using V�1=2V1=2 � 1, we arrive at

Q� 1 � �2V�1=2T:

We replace the maximum in Eq. (2) by an absolute value
and use that ln�1� x� � x for all x � 0 so that EN �Pnd

j�1 ln�1� j�j�Q� 1�j� � kQ� 1ktr. Using the unitary

invariance of the trace norm [19] and the fact that V�1=2 is
symmetric we obtain

kQ� 1ktr � 2kV�1=2Tktr � 2�1�V
�1=2�kTktr:

The spectrum of V can be obtained via discrete Fourier
transform and yields �1�V

�1=2� � �1� 2cd��1=2.
Now kTktr can be bounded from above by the sum of the

absolute values of all the matrix elements of T, which is
known as the l1 matrix norm [19]. Therefore, EN � 2�1�

2cd��1=2 Pnd
i;j�1 jTijj. In the following we bound the matrix

elements of V1=2 and consequently those of T. The explicit
implementation of the multidimensional discrete Fourier
transform is nontechnical yet involved. A more compact
notation employs the coordinate vectors k; l where kj; lj �
0; . . . ; n� 1 and j � 0; . . . ; d� 1. For our lattice we may
write Vk;l � VPd�1

j�0
kjnj;

P
d�1
j�0

ljnj
for the interaction term

between site k and l. The matrix elements of V1=2 are
then given by

V1=2
k;l �

X
k0

Yd�1

j�0

e2!ik
0
j�kj�lj�=n

nd

�
1� 2c

Xd�1

r�0

cos
2!k0r
n

�
1=2

:

To bound these, we replace the square root by its power
series expansion in the parameter 2c. This converges if
2cd � 1, which coincides with the constraint imposed by
the positivity of the potential matrix. We use �1� x�1=2 �
1�

P
1
s�1 Bsx

s, with 0<Bs < 1 and the fact thatPn
q�1 e

2!ipq=n � 0 for integer p and q unless p is a mul-
tiple of n. Then, for k � l we find

ys�k;l�=�1� y� � V�1=2
k;l � 0 � V1=2

k;l � �ys�k;l�=�1� y�;

where s�k; l� � �k0 � l0� � � � � � �kn�1 � ln�1�, y �
2cd, and 0 � kj � lj � n=2. The remaining matrix ele-
ments are determined by the periodic boundary conditions
under the exchange kj � lj � n� �kj � lj�. Note that
s�k; l� is the minimal number of lattice steps to move
from site k to site l. If, for example, s�k; l� � 1, then the
oscillators are direct neighbors.
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We may now proceed with the computation of the l1
norm of T, i.e., of the blocks in V1=2 that describe the
coupling between the distinguished region and the rest of
the lattice. Given that the region is a hypercube, this can be
done in a transparent way. Consider the set L0 of md �
�m� 2�d oscillators of the hypercube that lie directly on
the boundary and successively the sets Lr of �m� 2r�d �
�m� 2r� 2�d oscillators inside that are exactly r steps
away from the surface of the hypercube. Starting from the
set L0 and taking s steps on the lattice one can reach less
than �m� 2s�d �md oscillators outside the hypercube
m�d. Therefore we find that the sum of all the elements
of T that couple oscillators from the set L0 to oscillators
outside the hypercube is bounded by S0 � 2

P
1
s�1��m�

2s�d �md� ys

1�y . Now consider the contribution from the
set Lk. Clearly, any oscillator outside the hypercube that
can be reached from Lk in s� k steps can be reached from
L0 in s steps. Therefore, we can bound the sum Sk of all the
elements of T that couple the set Lk to oscillators outside
the hypercube by

Sk � 2
X1

s�k�1

f�m� 2�s� k��d �mdg
ys

1� y
:

As a consequence we obtain

EN �
2�����������������

1� 2cd
p

X1
s�1

��m� 2s�d �md�
ys

1� y

Xm=2

k�0

yk:

Using the binomial expansion of �m� 2s�d and the gamma
function to bound expressions of the form

P
1
s�0 y

s�2s�k, we
find for m> 4d=j ln�y�j the bound

EN �
16d�����������������

1� 2cd
p

�1� 2cd�2j ln�1� 2cd�j2
md�1; (4)

which is the desired upper bound that is linear in the
number of oscillators on the surface of the hypercube.

Lower bound.—In the following we demonstrate that the
degree of entanglement, measured by the entropy of en-
tanglement En;m, is asymptotically at least linear in the
number of oscillators on the boundary between interior and
exterior. The covariance matrix �A � A 
D with nonin-
creasingly ordered symplectic eigenvalues 'i �

��i�AD��1=2 describes the reduced Gaussian state of the
interior. Then

En;m �
Xmd

i�1

�
'i � 1

2
log

'i � 1

2
�

'i � 1

2
log

'i � 1

2

�

depends only on the symplectic spectrum of the covariance
matrix (see, e.g., Ref. [12]). The validity of the uncertainty
relations [15] yields 'i � 1 for all i � 1; . . . ; md so that

En;m �
Xmd

i�1

log�1� �'i � 1�� �
log'1

'1 � 1

Xmd

i�1

�'i � 1�:

To further bound the entropy we use that for any k � 0 and
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all x 2 �0; k� we have
������������
1� x

p
� 1� x�

������������
1� k

p
� 1�=k.

Together with �i�AD� � 1� �i��BET� and 'i � 1 we
find

En;m �
log'1

'2
1 � 1

tr��BET� �
1

2'2
1

tr��BET�:

By the Lidskii inequality [20] we then have �1�AD� �
�1�A��1�D� � �1��A�

2, and from the pinching inequality
[20], we find �1��A� � �1���. As before a discrete Fourier
transform then yields �1��� � �1� 2cd��1=2 so that '1 is
bounded from below independently of m and n. All ele-
ments of B and �E are positive. To bound these elements
from below we start from V�1=2 as given above replacing
the square root by its power series expansion in the pa-
rameter 2c. We use �1� x�1=2 � 1�

P
1
s�1 Bsxs as well as

Bj � 1=2j�1 and
Pn

q�1 e
2!ipq=n � 0 for integers p and q

unless p is a multiple of n. Furthermore, we replace all
multinomial coefficients by their trivial lower bound 1.
Then the nondiagonal elements of V1=2, and analogously
V�1=2, are bounded by 2jV�1=2

k;l j � �c=2�s�k;l��1� c2��1 .
As a consequence we have 4 tr��BET� �P

k;l�c=2�
2s�k;l��1� c2��2. We can further bound this by

considering only terms with s�k; l� � 1 of which there are
2dmd�1 so that

En;m �
c2

�����������������
1� 2cd

p

16�1� c2�2
�2m�d�1:

We thus obtain a lower bound proportional to the surface of
the hypercube m�d. This concludes the proof.

In the following we briefly describe possible extensions
of the above results that can be obtained by similar tech-
niques, including more general interactions, thermal states,
and classical correlations in classical systems.

Squared interactions.—The basic intuition behind the
entanglement-area dependence becomes most transparent
for the specific class of interactions for which the potential
matrices V are of the form V � W2 with a circulant band
matrix W. In that case the covariance matrix of the ground
state is given by � � W�1 
W. In this case one arrives at
the connection between entanglement and area since one
can show that (i) the number of terms contributing to the
symplectic spectrum of the reduced covariance matrix is
linear in the number of degrees of freedom at the boundary
of the region and (ii) the respective symplectic eigenvalues
are bounded from above and below independently of n and
m. Note that property (i) is equivalent to the existence of a
‘‘disentangling’’ symplectic unitary transformation local to
inside and outside of the regions such that only oscillators
near to the boundary remain entangled. Taking, e.g., V1 �
circ�1� 2c2;�2c; c2; 0; . . . ; c2;�2c� (the case of nearest-
neighbor and smaller next-to-nearest-neighbor interac-
tions) allows one to show that only the oscillators exactly
at the boundary contribute to the logarithmic negativity and
that �1�Q� � 2=�1� 2c� � 1, with Q being defined as in
Eq. (3). For the same interaction in d � 1 spatial dimen-
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sion one can even exactly calculate the symplectic spec-
trum of the reduced covariance matrix by means of a
simple recursion relation. In the limit m ! 1 this results
in the two nonvanishing symplectic eigenvalues '1�

'2��1�c2=q2��1=2, where q � c� 1=2� �c� 1=4�1=2.
Entanglement and area in classical systems.—It should

be noted that, perhaps surprisingly, an area dependence can
also be established analytically for classical correlations in
classical harmonic lattice systems [16]. It is noteworthy
that this result on classical systems can be established most
economically using quantum techniques, namely, mapping
the problem onto that of a quantum harmonic lattice with a
squared interaction as has been described above.

Entanglement and area at finite temperature.—The
property of squared interactions leading to effective disen-
tanglement extends to thermal states and permits the proof
of the linear entanglement-area dependence for finite tem-
peratures. In that case operational entanglement measures
such as the distillable entanglement are used. They can be
bounded from below by the hashing inequality and from
above again by the logarithmic negativity [16].

Summary and outlook.—For certain harmonic lattice
Hamiltonians, e.g., discrete versions of the real Klein-
Gordon field, we have proven analytically that the degree
of entanglement between a hypercube and its environment
can be bounded from above and below by expressions
proportional to the number of degrees of freedom on the
surface of the hypercube. This establishes rigorously a
connection between entanglement and area in this system.
Intuitively, this originates from the fact that one can ap-
proximately decouple the oscillators in the interior and the
exterior up to a band of the width of the order of the
correlation length of the system.

Our results can be extended to a wide variety of har-
monic lattice Hamiltonians, both quantum and classical,
and a future publication [16] will present details for more
general interactions, both ground and thermal states and a
careful discussion of the continuum limit, where the effec-
tive interaction strength is modified. Notably, in more
general lattice systems, the exact relationship between an
area dependence of the geometric entropy on the one hand
and a nondivergent correlation length away from critical
points on the other hand is still far from clear, even in one
dimension. In particular, it is possible to consider critical
systems in the sense of a divergent correlation length, yet
keeping the above area dependence concerning the entan-
glement. It is our hope that the present Letter can stimulate
further studies on such a general relationship between
criticality and area dependence employing the insights
and techniques that have been obtained in recent years in
the development of a quantitative theory of entanglement
in quantum information science.

We thank K. Audenaert for input at earlier stages of this
project and J. Oppenheim, T. Rudolph, and R. F. Werner for
discussions. We thank J. I. Latorre and G. Vidal for bring-
ing Ref. [21] to our attention. This work was supported by
06050
the DFG (SPP 1078), by the EU (IST-2001-38877), by the
EPSRC (QIP-IRC), and by the Royal Society.
3-4
[1] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys.
Rev. D 34, 373 (1986).

[2] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).
[3] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.

Math. Phys. 31, 161 (1973); J. D. Bekenstein, Lett. Nuovo
Cimento 4, 737 (1972); Phys. Rev. D 9, 3292 (1974); G. ’t
Hooft, Nucl. Phys. B256, 727 (1985); J. D. Bekenstein,
Contemp. Phys. 45, 31 (2004); D. Kabat and M. J.
Strassler, Phys. Lett. B 329, 46 (1994); T. M. Fiola, J.
Preskill, A. Strominger, and S. P. Trivedi, Phys. Rev. D 50,
3987 (1994); G. Gour and A. E. Mayo, ibid. 63, 064005
(2001); G. Gour, ibid. 67, 127501 (2003); C. Callan and F.
Wilczek, Phys. Lett. B 333, 55 (1994).

[4] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B424,
443 (1995).

[5] H. Casini, Classical Quantum Gravity 21, 2351 (2004).
[6] U. Yurtsever, Phys. Rev. Lett. 91, 041302 (2003).
[7] R. Buosso, Rev. Mod. Phys. 74, 825 (2002).
[8] P. Stelmachovic and V. Buzek, Phys. Rev. A 70, 032313

(2004).
[9] S. J. Summers and R. F. Werner, Phys. Lett. 110A, 257

(1985); H. Halvorson and R. Clifton, J. Math. Phys. (N.Y.)
41, 1711 (2000); R. Verch and R. F. Werner, quant-ph/
0403098; B. Reznik, A. Retzker, and J. Silman, quant-ph/
0310058; B. Reznik, A. Retzker, and J. Silman, J. Mod.
Opt. 51, 833 (2004).

[10] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner,
Phys. Rev. A 66, 042327 (2002).

[11] M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett.
92, 087903 (2004).

[12] A. Botero and B. Reznik, Phys. Rev. A 70, 052329 (2004).
[13] M. Fannes, B. Haegeman, and M. Mosonyi, J. Math. Phys.

(N.Y.) 44, 6005 (2003).
[14] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.

Lett. 90, 227902 (2003); J. I. Latorre, E. Rico, and G.
Vidal, Quantum Inf. Comput. 4, 48 (2004); J. I. Latorre,
C. A. Lutken, and G. Vidal, quant-ph/04041200.

[15] J. Eisert and M. B. Plenio, Int. J. Quantum Inf. 1, 479
(2003).

[16] Publication in preparation by the same authors in different
order.

[17] The continuum limit requires a careful analysis as the
ensuing limit c ! 1=�2d� is results in a diverging corre-
lation length. For a one-dimensional set there is strong
evidence for a logarithmic dependence of the entropy of
entanglement in the continuum limit [12,14,16].

[18] J. Eisert and M. B. Plenio, J. Mod. Opt. 46, 145 (1999); J.
Eisert, Ph.D. thesis, University of Potsdam, 2001; G. Vidal
and R. F. Werner, Phys. Rev. A 65, 032314 (2002); K.
Audenaert, M. B. Plenio, and J. Eisert, Phys. Rev. Lett. 90,
027901 (2003).

[19] R. A. Horn and C. R. Johnson, Matrix Analysis
(Cambridge University Press, Cambridge, 1985).

[20] R. Bhatia, Matrix Analysis (Cambridge University Press,
Cambridge, 1999).

[21] P. Calabrese and J. Cardy, J. Stat. Mech. Th. Exp. P00406
(2004).


