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Random Decoupling Schemes for Quantum Dynamical Control and Error Suppression
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We present a general control-theoretic framework for constructing and analyzing random decoupling
schemes, applicable to quantum dynamical control of arbitrary finite-dimensional composite systems. The
basic idea is to design the control propagator according to a random rather than deterministic path on a
group. We characterize the performance of random decoupling protocols, and identify control scenarios
where they can significantly weaken time scale requirements as compared to cyclic counterparts.
Implications for reliable quantum computation are discussed.
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Dynamical decoupling offers a versatile control toolbox
for quantum dynamical engineering in both traditional
settings like high-resolution spectroscopy [1] and quantum
information science [2]. Decoupling schemes operate by
subjecting the target system to a series of open-loop control
transformations, in such a way that the net evolution is
coherently modified to a desired one [3]. This combines
intrinsic design simplicity with the ability to avoid auxil-
iary memory and measurement resources, while addition-
ally enabling straightforward integration with other passive
[4] or active [5] quantum control techniques. Applications
of decoupling range from the removal of undesired cou-
plings in interacting quantum subsystems to active deco-
herence control and symmetrization in open quantum
systems [6]. In particular, the use of decoupling methods
in conjunction with procedures for universal control [7]
provides a route to noise-suppressed quantum computation
based solely on unitary means. Remarkably, recent ad-
vances support the potential for highly fault-tolerant con-
trol architectures [8,9].

So far, general formulations of the decoupling problem
have been restricted to deterministic control actions. In the
simplest, so-called bang-bang setting, where the latter are
instantaneous rotations drawn from a group G, decoupling
according to G is enforced by cycling the control propa-
gator through all group elements, translating into pulse se-
quences with minimal length Tc proportional to the size of
G [3]. This suffers from two main drawbacks. Because
averaging requires traversing all of G in a suitable sense,
decoupling becomes very inefficient for large groups, lead-
ing to unrealistically high control rates if the interactions to
be removed have a short correlation time �c. Furthermore,
it is not clear how to handle interactions which are them-
selves fluctuating on time scales which are short compared
to the averaging period Tc. These limitations severely
constrain the practicality of decoupling as a strategy for
decoherence suppression in open systems.

In this Letter, we propose to overcome the above limi-
tations by introducing a framework for random dynamical
decoupling. Physically, our approach takes inspiration
from a naturally occurring instance of a random decou-
05=94(6)=060502(4)$23.00 06050
pling process, that is, the self-averaging of intermolecular
interactions in gases and isotropic liquids due to random
translational and reorientational motions [1]. This intuition
is cast in control-theoretic language by requesting that the
control propagator follows a random but known path on G
[10]. We show how random decoupling may be used to
achieve a desired coherent averaging and obtain a bound on
worst-case performance. By comparing to ordinary cyclic
schemes, we find that, in the presence of rapidly fluctuating
interactions and/or large control groups, randomized de-
sign may prove superior. From the point of view of deco-
herence suppression, this not only establishes in general
the counterintuitive possibility to actively cancel noise
using randomness, but it also opens new prospects for
significantly mitigating time scale requirements in a wide
class of control systems.

Random decoupling setting.—Let S be a quantum
system with state space H S, dim�H S� � d <1, evolv-
ing under an arbitrary, possibly time-dependent drift
Hamiltonian H0�t�. Without loss of generality, we assume
H0�t� to be traceless for all t. We begin by constructing a
random decoupling protocol for effectively switching off
the evolution due toH0�t�, under the assumption of perfect,
unbounded control. Let the available control generate a
discrete or continuous compact group G, acting on H S via
a faithful, unitary, projective representation 	, 	�g� � ĝ
for g 2 G,	�G� � Ĝ. A random decoupler uses control in
G in two ways: first, to establish a logical frame that is
related to the physical one [where H0�t� is specified] by an
element of Ĝ; second, to rotate the system according to G
randomly over time, by following a random control path
Uc�t�. Thus, both the past control operations and the times
at which they are applied are known, but the future control
path is random.

The essence of the random decoupling approach is to
directly depict the evolution of the system in the logical
frame that continuously follows the applied control. Let
�S�t� � U�t��S�0�U

y�t� describe the state of the system
in the physical frame, evolving under the action of both
the internal Hamiltonian and the controller, and let
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~�S�t� � Uy
c �t��S�t�Uc�t� denote the corresponding logical

state, with ~�S�0� � �S�0�. Then the evolution in the logical
frame is fully specified by a propagator ( �h � 1)

~U�t� � Uy
c �t�U�t� � T exp

�
�i

Z t

0
du ~H�u�

�
;

where ~H�t� � Uy
c �t�H0�t�Uc�t�. Under the usual cyclicity

assumption of deterministic decoupling, Uc�t� Tc� �
Uc�t� for Tc > 0, the physical and logical frames strobo-
scopically coincide at times tN � NTc, N 2 N. By con-
trast, random decoupling is intrinsically acyclic, and the
control path almost never returns the system to the physical
frame. However, the available information about the past
control trajectory may be exploited to bring the state of the
system back to the physical frame if desired.

Error bounds.—To determine whether and how well
random decoupling succeeds at suppressing the dynamics
due toH0�t�, it is necessary to compare the evolution under
the propagator ~U�T� over a time interval T to the identity
evolution, up to a global phase. A natural measure is
provided by the error probability for an arbitrary pure
initial state PS � j ih j of S. With respect to the random
nature of the control path, the a priori error probability can
be expressed as an expectation

�T�PS� � EftrSP
?
S ~�S�T��g

� EftrSP?
S
~U�T�PS ~U�T�y�g; (1)

where P?
S � 1S � j ih j is the orthogonal complement of

PS and E denotes ensemble average. Then a worst-case
pure state error probability may be defined as

�T � maxPSf�T�PS�g: (2)

A quantitative bound for �T is contained in the following:
Theorem 1: Suppose that (i) G acts irreducibly on H S.

(ii) Uc�t� is uniformly random for each t. (iii) For any
t; s > 0, Uc�t� and Uc�t� s� are independent for s >�t.
(iv) jjH0�t�jj2 is uniformly bounded in time by k > 0. Then

�T � O�T�tk2� for T�tk2 � 1: (3)

Here, jjAjj2 � maxjeig�
���������
AyA

p
�j, and uniformly random

is intended relative to the invariant Haar measure �G on G,
normalized such that �G�G� � 1 [11]. While a rigorous
proof of the above Theorem 1 is rather lengthy [12], an
outline of the underlying strategy suffices for gaining
physical insight. The key step is to realize that, in each
of the integrals involved in the Dyson series expansion of
the time-ordered exponentials defining ~U�T� and ~Uy�T� in
Eq. (1), the independence assumption (iii) effectively par-
titions the integration domain in two separate regions: a
volume W1��t�, where none of the integration variables is
more than �t away from all the remaining ones; and the
complement W2��t�, where this condition is violated by at
least one variable. The expectation relative to such a vari-
able may be taken separately, leading, under the uniformity
assumption (ii), to a contribution of the form
06050
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c �t�H0�t�Uc�t�g �

Z
G
d�G ĝ

yH0�t�ĝ;

t 2 �0;�t�:

Notice, as the result of such an ensemble average, the
appearance of the same dynamical G symmetrization
which, in standard deterministic schemes, is achieved
through the time average over a cycle [3,13]. In particular,
the irreducibility assumption (i) implies maximal projec-
tion in the set of scalars. That is, for X traceless,

Z
G
d�G ĝyXĝ �

tr�X�
d

1S � 0: (4)

As a consequence, all terms originating from W2��t� van-
ish, and the desired upper bound to �T�PS� may be deter-
mined by estimating the volume of W1��t�. The
irreducibility assumption can of course be weakened. As
it turns out, the final result (3) for �T has a simple intuitive
explanation, which we defer until after we describe the
corresponding error bound for deterministic schemes.

From an implementation perspective, one may distin-
guish two main scenarios, depending on whether the de-
coupler is specified by a continuous or discrete control
group G. In the former case, the decoupling time scale
�t is defined by the independence requirement between
Uc�t� and Uc�t� s�, condition (iii) entering as a design
constraint. Note that bounded-strength controls might suf-
fice as long as �t is finite. If G is discrete, the required
random walk of Uc�t� may be enforced through a sequence
of equally spaced bang-bang pulses randomly drawn from
Ĝ. In this case, the independence requirement is automati-
cally satisfied by identifying �t with the separation be-
tween consecutive kicks. Either way, it is important to
stress that random decoupling (unlike deterministic decou-
pling) places no restriction on the temporal behavior of
H0�t�, only on its maximum eigenvalue.

Random decoherence suppression.—The above formal-
ism can be extended to the suppression of noise ef-
fects arising from the coupling between the target sys-
tem S and an uncontrollable quantum environment E.
Let the total drift Hamiltonian be expressed in the form
H0�t� � 1S �HE �

P
aJa�t� � Ba, where HE accounts

for the (typically unknown) evolution of E and the in-
ternal evolution of S is included among the inter-
action operators, with trJa�t�� � 0 for all t. The action
of the decoupler is understood as Uc�t� � 1E. Physically, it
is meaningful to define a pure-state error probability that
depends only on the reduced state of S in the logical frame.
That is, ~�S�T� in Eq. (1) is now calculated as ~�S�T� �
trE ~U�T�~�SE�0� ~U

y�T��, ~�SE�0� � �SE�0� being the joint
initial state and, as before, the logical propagator ~U�t�
describing the combined evolution in a frame that explic-
itly removes the control field. By purifying the environ-
ment, we can assume that �SE�0� � PS � PE, both PS and
PE being one-dimensional projectors. The derivation of a
bound for �T�PS� may be formally carried out following
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the same steps as in the uncoupled case. It suffices to
observe that Eq. (1) is equivalent to

�T�PS� � EftrS;EP?
S � 1E ~U0�T�PS � PE ~U0�T�y�g;

with the propagator

~U0�t� � Uy
E�t�U

y
c �t�U�t� � T exp

�
�i

Z t

0
du ~H0�u�

�

describing the evolution in a frame where both the ap-
plied control and the environment dynamics UE�t� �
exp��iHEt� are explicitly removed, and ~H0�t� �P
aU

y
c �t�Ja�t�Uc�t� � Ba. We thus have the following:

Theorem 2: Let G act irreducibly on H S and satisfy the
same uniformity and independence assumptions as in
Theorem 1. If jj

P
aJa�t� � Bajj2 is uniformly bounded in

time by # > 0, then

�T � O�T�t#2� for T�t#2 � 1: (5)

Formally, # is a measure of the overall noise strength as
defined in the context of quantum error-correction theory
[14]. As pointed out in this reference, caution is required in
treating infinite-dimensional environments. Physically,
1=# � �c is of the order of the shortest correlation time
scale present in the interaction to be removed. While the
latter provides the relevant time scale to consider in the
absence of additional information about the environment’s
initial state, power spectrum, and internal dynamics, such
properties may critically impact the decoupling perform-
ance in actual applications [15]. Thus, lower error bounds
tend to be fairly example specific.

According to the above theorems, �T can in principle be
made arbitrarily small by appropriate control design, im-
plying the possibility to arbitrarily suppress on average the
unwanted evolution in the logical frame. This is especially
surprising for decoherence suppression considering that, in
the physical frame, the applied random field appears to be
in general a source of decoherence. It is worth noting that
the possibility to exploit randomization was considered
earlier for specific decoupling problems. Preservation of
coherence of a lossy radiation mode via the random modu-
lation of a system parameter was established in [16]. More
recently, a randomized refocusing algorithm was proposed
in [17] in the context of efficient simulation of quantum
computation starting from few-body Hamiltonians on n
qubits. While revisiting such specific situations in the light
of the present analysis is interesting in itself, our main goal
in what follows is to continue developing a model-
independent formulation of random decoupling in general
control-theoretic terms.

Comparison with cyclic decoupling.—In order to assess
the performance and usefulness of random decoupling
schemes, a comparative error bound for deterministic de-
coupling is needed. We focus on the standard situation
where the drift Hamiltonian H0 is time independent, and
decoupling is accomplished by cyclic averaging over a
finite group of order jGj> 1. Apart from the redundant
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ensemble expectation, Eqs. (1) and (2) still define a valid
worst-case pure state error probability. The deterministic
counterpart to Theorem one is then the following:

Theorem 3: Suppose that (i) G acts irreducibly on H S.
(ii) Uc�t� is assigned according to a cyclic path over G,
withUc�t�� ĝj for t 2 j�t; j� 1�t�, j � 0; . . . ; jGj � 1,
�t > 0, and Tc � jGj�t. (iii) jjH0jj2 is bounded by k > 0,
with kTc < 1. Then

�T � O��TTck
2�2� for TTck2 � 1� kTc: (6)

The proof follows from a direct evaluation of the logical
propagator ~U�T� using average Hamiltonian theory [1],

~U�T� � e�iHT; H �
X1
‘�0

H�‘�;

where H is computed from the Magnus expansion under
the averaging and convergence conditions, H�0� � 0 and
kTc < 1, respectively [12]. We now provide an intuitive
justification to the error bounds we found.

Write R � T�tk2 � �k�t�2�T=�t�. For the random
method, each control step can accumulate an error am-
plitude of up to k�t. Randomizing the decoupler has the
net effect that the amplitudes add up probabilistically.
Therefore, over an evolution time T, the total error proba-
bility is bounded by the number T=�t of such intervals,
times the error probability �k�t�2 of each step. Notice that
the bound of Theorem 1 is indeed �RT � O�R�.

For the cyclic method using jGj steps of duration �t in
each cycle, the dominant errors are due to H�1�. That is,
they arise from noncommuting contributions associated
with pairs of intervals in a cycle. Thus, for each cycle the
error amplitude is bounded by jGj2�k�t�2, and a total time
T contains T=�jGj�t� such cycles. If, as assumed, each
cycle is identical and the interaction is constant, the total
error amplitude is bounded by the sum, yielding jGjR. By
squaring and using that jGj�t � Tc, the bound of
Theorem 3 emerges, �DT � O�jGj2R2�.

The above analysis shows that the worst-case errors of
the two procedures compare as follows:

�RT � O�R� vs �DT � O��jGj2R�R�;

the quantity jGj2R becoming a relevant figure of merit for
performance. Thus, cyclic decoupling tends to perform
better if any time dependence or fluctuations in the inter-
actions to be removed have time scale longer than Tc �
jGj�t and, in addition, jGj2R� 1. Superior performance
of random decoupling is expected instead in situations
where the effective correlation or fluctuations have time
scales large compared to �t but short compared to jGj�t,
or, alternatively, jGj2R� 1.

Generalizations and applications.—The above results
lend themselves to a number of generalizations. The ex-
tension to reducible group actions (hence selective de-
coupling) is conceptually straightforward. Procedures
for universal decoupled control may be designed similarly
to [7], by randomly modulating the applied control
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Hamiltonians to compensate for the decoupler action if
necessary. This paves the way to schemes for randomly
controlled noise-suppressed universal quantum computa-
tion. In addition, one may envisage a variety of hybrid
control schemes where deterministic and random opera-
tions are simultaneously exploited. At least two options are
worth considering. First, one may randomize the decou-
plers. If multiple decouplers are available to effect a de-
sired averaging, which one to apply may be picked at
random at every cycle. Or, with a single decoupler, one
may randomize the cycles, by randomly choosing which
path to follow to traverse G. While a clever concatenation
of deterministic and random protocols could merge advan-
tageous features from both methods, quantitative error
estimates as well as studies of the typical performance in
specific situations will be reported elsewhere.

We anticipate that randomization might offer substantial
benefits whenever a large number of control time slots is
involved. An extreme example is maximal decoupling in n
arbitrarily coupled qubits, d � 2n. Deterministic group-
based schemes require averaging over the Pauli error basis
f1; *x; *y; *zg�n, with jGj � d2 � 4n [3]. For fixed con-
trol parameters T;�t such that R� 1, the condition
jGj2R� 1 becomes exponentially harder to meet as n
increases. Equivalently, for a fixed tolerable error �T , an
interval �t that shrinks exponentially with n is needed to
compensate jGj2 in this case. A randomized implementa-
tion of Pauli decoupling is indeed at the heart of the
simulation algorithm mentioned above [17]. In addition,
the recently proposed Pauli-random-error-correction
method for coherent errors [18] may also be understood
as an ingenious application of the present control frame-
work, random Pauli rotations being repeatedly applied
to average static imperfections, and permutations of the
original logic gates ensuring the intended decoupled con-
trol. While cyclic schemes with quadratic complexity [19]
are known for bilinearly coupled qubits as assumed in [18],
randomized schemes may still be attractive for large n and/
or time-varying couplings. In the same spirit, the cancella-
tion of rapidly fluctuating dynamical imperfections re-
ported in [20] may be suggestively reinterpreted as a
random self-decoupling effect. Lastly, efficiency improve-
ments are to be expected from decoupling according to the
symmetric group Sn acting on n qubits, which otherwise
involves factorial overheads, and is relevant to the syn-
thesis of collective noise [21].

Conclusion.—We introduced an approach to dynamical
decoupling that relies on random control design. Beside
being interesting per se as a largely unexplored setting for
coherent and error control, random dynamical decoupling
carries the potential for faster convergence and relaxed
timing constraints compared to deterministic counterparts
in relevant situations. While additional work is needed to
expand the present analysis, we believe that our results add
to the significance of decoupling methods as a control-
theoretic tool and allow a step forward toward making
06050
them a practical error control strategy in quantum infor-
mation science.
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