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Direct Imaging of Spatially Modulated Superfluid Phases in Atomic Fermion Systems
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It is proposed that the spatially modulated superfluid phase, or the Fulde-Ferrell-Larkin-Ovchinnikov
state could be observed in resonant fermion atomic condensates which are realized recently. We examine
optimal experimental setups to achieve it by solving the Bogoliubov–de Gennes equation for both
idealized one-dimensional and realistic three-dimensional cases. The spontaneous modulation of this
superfluid is shown to be directly imaged as the density profiles either by optical absorption or by Stern-
Gerlach experiments.
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A keen interest focuses on resonance fermion conden-
sations by using ultracold atomic 6Li or 40K clouds. It is
now agreed that the BCS superfluid state has been achieved
by various experimental groups [1–7], where magnetic
field Feshbach resonance is utilized to finely control the
atomic interaction between strong repulsive and attractive
regions. There are not only active experimental and theo-
retical [8,9] investigations on this BCS–Bose-Einstein
condensation (BEC) crossover phenomenon, but also pio-
neering works on exploring the BCS pairing state, includ-
ing spectroscopic experiments [10,11] to extract the energy
gap value as functions of temperatures and the coupling
constant [12,13].

In the current experiments, the prepared fermion num-
bers of two species, where the hyperfine states
jF � 9

2 ; mF � � 9
2i and jF � 9

2 ; mF � � 7
2i are used in the

40K case [1], are equal to maximize the transition tempera-
ture. Here, by intentionally making these numbers unequal,
we could achieve a spatially modulated BCS state, namely,
the so-called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [14,15].

This interesting state has been much sought out for a
long time in vain in a superconductor. One of the main
difficulties in stabilizing it lies in the fact that applying a
field to create a population difference of up and down
electrons inevitably induces the diamagnetic current which
acts as a Cooper pair breaker. An exceptional case is that of
ferromagnetic superconductors whose internal ferromag-
netic molecular field does not induce it. Even under this
favorable situation any firm conclusion has not been
reached for ternary compounds ErRh4B4 and HoMo6S8

[16,17]. One of the difficulties for observing it is the
absence of an experimental method to see the modulation.
The FFLO state is also discussed in a new heavy compound
CeCoIn5 [18] or even in a high energy community in
connection with neutron stars [19].

The present neutral fermion systems are ideal for pursu-
ing this realization of the FFLO state: (1) There are no pair
breaking mechanisms such as the diamagnetic current or
impurities which weaken the stability of this state. (2) As is
shown below, fine adjustment on the population difference
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of two species, say, up and down fermions, and attractive
interactions is possible for the system to be in the most
favorable and easily observable condition for the FFLO
state.

The purposes of this Letter are to analyze the most
suitable condition for observing the FFLO state by maxi-
mally utilizing the limited experimental resources for the
present neutral atomic vapors and also to provide the
experimental signatures of the FFLO state within the cur-
rently available experimental techniques. The arrangement
of this Letter is the following: After introducing the
Bogoliubov–de Gennes formalism which allows us to
describe the spatially modulated phase, we provide briefly
a known analytic solution for the FFLO state of the quasi-
one-dimensional system [17], which is useful for grasping
the general perspective of the present problem. Then, we
show a numerical calculation for the more realistic situ-
ation where the atomic cloud is confined by a three-
dimensional harmonic trap.

We start out with the pairing Hamiltonian
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with g � 4� �h2a
m being the attractive interaction. a�<0	 is the

s-wave scattering length. An axis-symmetric trap potential
V�r	 � 1

2m�!
2
rr2 �!2

zz2	 is assumed. Here, to prepare the
unequal population in two species � �"; # , the following
chemical potential is used: 	� � 	� ��̂3	�;��	 with the
Pauli matrix �̂3. The fermion operators of the two species
are denoted by  ̂y

��r	 and  ̂��r	. The Bogoliubov trans-
formation with the mean-field approximation is employed
to diagonalize the Hamiltonian, that is,  ̂" �

P
quq�q;" �

v�q�
y
q;#� and  ̂y

# �
P

qvq�q;" � u�q�
y
q;#� within the creation

and annihilation operators �q;� and �y
q;�. To this end, one

can lead to the Bogoliubov–de Gennes (BdG) equation:
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where K� � � �h2

2mr
2 � V�r	 � g���r	 with the self-

consistent equation

��r	 � geff

X
q
uq�r	v�q�r	f�"q	: (3)

The order parameter ��r	 � geffh ̂#�r	 ̂"�r	i, the par-
ticle density of each component �"�r	�

P
qjuq�r	j

2f�"q	,
and �#�r	 �

P
qjvq�r	j21� f�"q	� where f�"q	 � 1=

�e"q=kBT � 1	 is the Fermi-distribution function. Since the
finite shift of the chemical potential �̂3�	 causes a dis-
tinction of the mean-field potential for two species, the
particle-hole symmetry is broken [20]. Therefore, the sum
in Eq. (3) is done for all the eigenstates with both positive
and negative eigenenergies. When calculating ��r	, we
have used a regularized coupling constant geff to avoid
the ultraviolet divergence [21].

In the one spatial dimension without a trap, which is ap-
proximate for a long cigar-shaped gas!z=!r ! 0, one ad-
mits an exact analytical solution [17], which has the form

��z	 � �1k1sn��1z; k1	: (4)

Here, sn�z; k	 is the Jacobi elliptic function with the modu-
lus k (k1 is the complementary modulus). �1 is the order
parameter to be determined self-consistently. According to
this solution at zero temperature, the FFLO state is ener-
getically stable for the relative population difference

�n �
jn" � n#j

n
�

1

�
�0

"F
; (5)

where the particle number of each component n� �R
dr���r	 and the total particle number n �

P
�n�. "F is

the Fermi energy and �0 is the amplitude of the order
parameter of a uniform BCS state at zero temperature.
Beyond the above critical population difference, the uni-
form BCS state changes into the modulated FFLO state.
Since �0="F � 0:2–0:4 in the present experiments, the
critical population difference should be of an order of a
10%–20% difference.

This modulated phase accompanies the spin variation
with half of the fundamental modulation periodicity. The
excess density of the up-spin fermions (n" > n#) periodi-
cally accumulates at the zeros of ��z	. The accumulation
becomes sharp in space when approaching either the criti-
cal population difference or the stronger coupling region.
This is illustrated in Figs. 11 and 12 of Ref. [17] where
��z	 and the associated spin modulation are seen for two
typical �n values, one near the critical boundary and the
other far from it.

Since each atomic species can be probed optically be-
cause of different absorption frequencies, we can im-
age each density separately in space. Thus, it is crucial
to appropriately choose the two parameters; j�nj �
jn" � n#j=n and �0="F in order to obtain a sharp absorption
image. Another way to detect this spin modulation is to
perform Stern-Gerlach experiments, revealing the different
06040
particle density distributions for spin-up and spin-down
fermions.

As for the modulation periodicity ! relative to the mean
particle distance L � 1=kF,

!
L

�
"F

�0

kK�k	
�

; (6)

whereK�k	 is the complete elliptic integral of the first kind.
As a rough estimate, we find ! � 3–30 	m for �="F �
0:1–0:01 and n� 1020 m�3.

After having finished the order of magnitude estimates
for various quantities based on the analytic solution, we
present a more realistic calculation by numerically solving
the BdG Eq. (2) self-consistently for help with designing
an experiment: We consider the axis-symmetric harmonic
trap potential with !r=2� � 1:67!z=2� � 1000 Hz and
the 6Li atoms with the chemical potential 	 � 12:5 �h!r,
corresponding to n� 1100 atoms. Throughout this Letter,
�0="F � 0:35 and kBT= �h!r � 0:05 are fixed.

The results are displayed in Fig. 1 where the spatial
variation of the pairing field ��r; z	 and the total density
profile ��r; z	 are shown. ��r; z	 changes its sign at the
plane z � 0 and also near the edges of the pairing field
[see the solid line in Fig. 1(c)]. Since the system has an
elongated ellipsoidal shape, ��r; z	 is never a simple sinu-
soidal form. This is quite different from the above one-
dimensional case where the total density is assumed to be
uniform. In the present situation the total density is nonuni-
form because of the confinement. The order parameter is
inevitably inhomogeneous intrinsically.

As seen in Fig. 1(b), the total density along the z axis is
similar to that expected for the Thomas-Fermi approxima-
tion for the normal fermions except for a small feature, a
dip at z�0. This is related to the local suppression of ��r	.

In Fig. 1(c) we show the cross section ��r � 0; z	 at the
r � 0 axis. As �n becomes large, the modulation period
tends to become short, and thus the extra zeros appear near
the edges. It is also noted from this that for �n � 0:32 the
modulation period becomes shorter towards the edges
where the local density tends to be dilute.

In Fig. 2 we display our most important results, which
are directly probed experimentally. The local magnetiza-
tion m�r	 defined by m�r	 � �"�r	 � �#�r	, which is the
local population difference of the two species, is shown in
Fig. 2(a). It is seen from this that m�r	 exhibits peaks at the
central plane z � 0, where a prominent peak is observed at
r � 0, and also a small peak at the edge. Since we are
treating a three-dimensional object with an almost spheri-
cal shape, it is essential for experiments that the physical
quantities integrated along the radial direction, namely, the
columnar densities, should exhibit a prominent feature to
probe it. In Fig. 2(b) we display the columnar densities
���z	 � 2�

R
drr���r; z	 and m�z	 � �"�z	 � �#�z	, both

of which are directly observable. Because the two species
have different magnetic moments, we can spatially sepa-
rate the two species by passing it through a field gradient.
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FIG. 2 (color online). (a) Stereographic view of the magneti-
zation m�r; z	, and (b) its columnar density profile along the z
axis for �n � 0:15. (c) The columnar magnetization profiles
m�z	 for various �n � 0:07; 0:15; 0:32. The arrows indicate the
positions of the zeros of ��r � 0; z	, which is displayed in
Fig. 1. The number of the zeros is 1 (�n � 0:07), 3 (�n �
0:15), and 5 (�n � 0:32).
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FIG. 1 (color online). (a) The spatial profiles of the pairing
field ��r; z	 and (b) the total density ��r; z	 for the population
difference �n�0:15 and �0="F � 0:35. (c) The cross section of
��r; z	 at r � 0 is shown for various population differences �n.
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In this Stern-Gerlach experiment, which is performed in
spinor BEC [22], �"�z	 and �#�z	 in Fig. 2(b) are directly
imaged. Another way to reveal these modulations is to
utilize the fact that each species has a different clock
transition frequency. By taking an absorption image with
a particular frequency tuned we can selectively probe these
modulations.

It is seen from Fig. 2(c) that, depending on the popula-
tion difference under a fixed �0="F, the magnetization
m�z	 shows quite different spatial structures: As �n in-
creases, the single peak structure for �n � 0:07 changes
into multiple peaks, corresponding to the increments of the
zeros of ��r; z	 [also see Fig. 1(c)].

It is instructive to see the gap structure in the FFLO state
because the fermionic excitation spectrum is distinctively
altered from the uniform BCS state. In Fig. 3 the local
density of states (LDOS) for up and down spins defined by

N"�r; E	 �
X
q
juq�r	j2��E� "q	;

N#�r; E	 �
X
q
jvq�r	j2��E� "q	;

(7)

are shown. Figure 3 shows the following: (i) Away from the
center at r � 0 and z � 0, the energy gap becomes narrow
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as a function of z, corresponding to the low-energy quasi-
particle excitations bounded near the surface of the cloud
[23]. (ii) The localized LDOS appears near the Fermi level
at z � 0 and also near the edges of the cloud z� 8 	m. In
the spin-up (spin-down) case of Fig. 3(a) (3(b)) the large
midgap state at z � 0 situated below (above) the Fermi
level is filled (emptied), meaning physically that the excess
spin-up fermions are accommodated by keeping the overall
bulk gap structure intact. (iii) These midgap states at z � 0
correspond to the positions of the zeros of ��r; z	 shown in
Fig. 1.

We can observe these midgap states by using stimulated
Raman transition as an extra satellite. This technique is
employed by Chin et al. [10], who identify the energy gap
in Fermi condensates. Note that this spectroscopy is most
useful for a cigar-shaped cloud to separate the midgap and
surface excitations.

Finally, we mention a work by Combescot [24] who
examines the stability problem of neutral atomic fermions
with different Fermi radii under the absence of a trap. Yet
another superfluid phase of an anisotropic gap is predicted.
The precise boundary between FFLO and this phase re-
mains to be worked out in a realistic situation.
4-3



FIG. 3 (color online). (a) The local density of state profiles
N"�r � 0; z; E	 and (b) N#�r � 0; z; E	 at r � 0 for the popula-
tion difference �n�0:15 and �0="F�0:35. The large empty re-
gion in the center in both figures corresponds to the energy gap.
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We also mention that the present spatially modulated
FFLO shares a common physics of the so-called stripes
paradigm, which includes spin density waves in Cr [25],
the spin-Peierls system [26], and high-Tc cuprates [27]. In
these systems the order parameter of the staggered moment
is commonly characterized by the spatial modulation with
a sign change. The node of the order parameter, namely,
the domain wall feature, corresponds to stripes in the latter.

In conclusion, we have proposed an experimental way to
achieve the FFLO state on resonance fermion superfluid
systems with unequal mixtures of two species. One attrac-
tive point to accomplish it is that under a fixed population
difference, say 10%, by moving out from the Feshbach
resonance point, we can cross the boundary from the
uniform Cooper paired state into the FFLO state. This
boundary region is most favorable to image the modulated
pattern since the magnetization has a sharp peak at the zero
of the pairing field. The direct imaging can be performed
either by species-selective absorption, or by Stern-Gerlach
separation.

One of the authors (K. M.) thanks W. Ketterle for
encouragement.
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