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Effect of Congestion Costs on Shortest Paths Through Complex Networks
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We analyze analytically the effect of congestion costs within a physically relevant, yet exactly solvable,
network model featuring central hubs. These costs lead to a competition between centralized and
decentralized transport pathways. In stark contrast to conventional no-cost networks, there now exists
an optimal number of connections to the central hub in order to minimize the shortest path. Our results
shed light on an open problem in biology, informatics, and sociology, concerning the extent to which
decentralized versus centralized design benefits real-world complex networks.
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FIG. 1 (color online). (a) Our model network showing trans-
port pathways through the central hub (connections of length 1=2
denoted by thick lines) and around the ring (connections of
length 1 denoted by thin lines). Graph shows average shortest
path length between any two nodes in a n � 1000 node ring,
with a cost per connection to the hub of k � 1. There is an
optimal value for the number of connections (� � pn � 44)
such that the average shortest path length �‘ is a minimum. We
denote this minimal shortest path length as �‘ � �‘jmin. (b) Photon
scintillation image showing the nutrient density distribution
within a laboratory-grown fungus Phanerochaete velutina.
The interplay between structure and function in complex
networks has become a major research topic in physics,
biology, informatics, and sociology [1–7]. For example,
the very same links, nodes, and hubs that help create short
cuts in space for transport may become congested due to
increased traffic yielding an increase in transit time [4].
Unfortunately there are very few analytic results available
concerning network congestion and optimal pathways in
real-world networks [4–7].

In this Letter, we provide exact analytic results for
the effects of congestion costs in networks with a com-
bined ring-and-star topology. Figure 1(a) shows an ex-
ample of our model network with N � 1 central hub. In
addition to the fact that it is analytically tractable and
possesses a topology which is distinct from Refs. [4–7],
our model network is of direct relevance to a wide range
of biological, computational, and socioeconomic systems
in which there is a potentially congested central node(s).
Figure 1(b) shows the nutrient transport in a laboratory-
grown fungus [8]. The major transport pathways pass
through a central hub (i.e., centralized transport) with
some minor pathways around it (i.e., decentralized trans-
port). It is an important yet open question in biology as
to how organisms such as fungi make a trade-off between
centralized and decentralized transport, communication,
and control. A related scenario with a similar topology
concerns the new congestion charge scheme in London
that aims to dissuade drivers from passing through the
central zone. Airlines must balance the costs and benefits
of stopovers at major, yet potentially overcrowded, airport
hubs. Similar trade-offs between centralized and decentral-
ized routing, communication, and control arise in data
networks, manufacturing supply chains, and government.
Even for crime or terrorist networks, one can ask how the
Mafia’s approach of passing all decisions through a central
‘‘Godfather’’ compares to the apparently headless form
of modern terrorist cells. More generally, our model net-
work could be used to describe clusters or motifs within
larger networks in which relatively isolated hubs are con-
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nected to lower-connectivity nodes (e.g., scale-free
network).

Our model represents a generalization of Ref. [9] to the
case of nonzero congestion costs. Each of the n nodes
around the ring is connected to its nearest neighbors by a
link of unit length. These links are directed in the ‘‘di-
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FIG. 2. Minimal shortest path length �‘jmin (i.e., minimum
value of �‘) as obtained from Eq. (5). (a) Optimal number of
connections � � pn as a function of the cost-per-connection k to
the hub. Results are shown for n � 1000 and n � 10 000.
(b) Optimal number of connections � as a function of the
network size. Results are shown for k � 2 and k � 4.
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rected’’ model, and undirected in the ‘‘undirected’’ model.
With a probability p any node can be attached to the central
hub by a link of length 1

2 . The links to the hub are always
undirected. For both the directed and undirected models,
explicit expressions can be derived for the probability
P�‘;m� that the shortest path between any two nodes on
the ring is ‘, given that they are separated around the ring
by length m. Summing over all m for a given ‘ and dividing
by �n� 1� yields the probability P�‘� that the shortest path
between two randomly selected nodes is of length ‘. The
average value for the shortest path across the network is
then �‘ �

Pn�1
‘�1 ‘P�‘�. For the undirected model, the ex-

pressions are more cumbersome because there are more
paths with the same length. However, defining nP�‘� �
Q�z; �� where � � pn and z � ‘=n, there is a simple
relationship between the undirected and directed models
in the limit n ! 1 with p ! 0, i.e., Qundir�z; �� �
2Qdir�2z; �� [9]. The models only differ in this limit by a
factor of 2: z ! 2z, with z now running from 0 to 1=2.

We add a cost c every time a path passes through the
central hub. This cost c is expressed as an additional path
length; however, it could also be expressed as a time delay
or reduction in flow rate for transport and supply-chain
problems. We consider three cases: (1) constant cost c
where c is independent of how many connections the hub
already has; i.e., c is independent of how ‘‘busy’’ the hub
is; (2) linear cost c where c grows linearly with the number
of connections to the hub, and hence varies as � � np; (3)
nonlinear cost c where c grows with the number of pairs
connected directly across the network, and hence varies as
�2.

For a general, nonzero cost c that is independent of ‘ and
m, we can write (for a network with directed links):

P�‘; ‘ 
 c� �
1

n� 1
(1)

P�‘ < m; ‘ > c� � �‘� c�p2�1� p�‘�c�1 (2)

P�‘�m;‘>c� � 1�p2
X‘�c�1

i�c�1

�i� c��1�p��i�c��1: (3)

Performing the summation gives:

P�‘�m;‘>c�� �1��‘�c�1�p�1�p�‘�c�1: (4)

The shortest path distribution is hence:

P�‘��

8><
>:

1
n�1 8‘
c
1

n�1�1��‘�c�1�p
��n�1�‘��‘�c�p2�1�p�‘�c�1 8‘>c

:

Using the same analysis for undirected links yields a
simple relationship between the directed and undirected
models. Introducing the variable � � c

n with z and � as
before, we may define nP�‘� � Q�z; �; �� and hence find
in the limit p ! 0, n ! 1 that Qundir�z; �; �� �
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2Qdir�2z; 2�; ��. For a fixed cost, not dependent on net-
work size or the connectivity, this analysis is straightfor-
ward. Paths of length l 
 c are prevented from using the
central hub, while for l > c the distribution P�l� is similar
to that of Ref. [9].

For linear costs, dependent on network size and con-
nectivity and for N � 1 central hub, we can show that there
exists a minimum value of the average shortest path �‘ as a
function of the connectivity to the central hub. Hence there
is an optimal number of connections to the central hub in
order to create the minimum possible average shortest
path. We denote this minimal path length as �‘ � �‘jmin.
Such a minimum is in stark contrast to the case of zero cost
per connection, where the value of �‘ would just decrease
monotonically towards 1 with an increasing number of
connections to the hub. We now calculate the average
shortest path, �‘ �

Pn�1
‘�1 ‘P�‘�, which yields:

�‘�
�1�p�n�c�3��n�2�c�p

p2�n�1�

�
p�2�2c�2n��c�1��c�n�p�3

p2�n�1�
�
c�c�1�

2�n�1�
: (5)

Figure 1 shows the functional form of �z �
�‘
n with a cost of

one unit path length per connection to the hub (i.e., c �
knp � k�, with k � 1). The optimal number of connec-
tions in order that �‘ is a minimum is approximately 44 and
depends on n. The corresponding minimal shortest path
�‘jmin is approximately 85. An analytic expression for �‘jmin

can be obtained by setting the differential of Eq. (5) equal
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to zero. If n is very large, one can introduce a higher cost
without compromising the minimal shortest path �‘jmin

since in general the nodes are already much further from
one another. We can also investigate how many connec-
tions we should make for a given cost and network size in
order to achieve the minimum possible shortest path �‘jmin.
This is obtained by setting the differential of Eq. (5) equal
to zero and solving for p. Figure 2(a) shows analytic results
for the optimal number of connections which yield the
minimal shortest path �‘jmin as a function of the cost per
connection for a fixed network size. Figure 2(b) shows
analytic results for the optimal number of connections
which yield the minimal shortest path �‘jmin as a function
of the network size for a fixed cost per connection to the
hub.

For large n, or more importantly, large n� c, the term
�1� p�n�c ! e�� in Eq. (5). Provided that the cost per
connection to the hub is not too high, the region containing
the minimal shortest path �‘jmin will be at a reasonably high
� [recall Fig. 1(a)]. Hence we can neglect the exponential
term and differentiate to find the minimum value of �‘ with
c � knp � k�. It is reasonable to assume that at fixed k,
optimal � will increase with n like nx where 0< x 
 1. In
particular, one obtains diffusive behavior whereby x�

1=2. Specifically, � �
����
2n
k

q
. For a large network (i.e., large

n), we have therefore obtained a simple relationship be-
tween the number of connections one should introduce in
order to create the minimal average shortest path between
any two nodes in the network, and the cost per connection
to the hub. It can be shown by comparing to Fig. 2 that this
analytic scaling relation is accurate even down to n� 10,
but is particularly good for n larger than 103.

Now we briefly consider a specific yet physically rea-
sonable example of nonlinear costs, in which the costs are
taken to depend on the number of pairs that are connected
via the hub. In particular, we use c � k�np�2. We obtain
the analytic relationship � �

��n
k

3
p

, which is the nonlinear
equivalent of the above result.

For linear costs, the lowest value of �‘ one can achieve is
�‘jmin �

��������
8kn

p
. Setting n � 103 and k � 1 gives �‘jmin �

89:4, which agrees well with the exact analytic result
shown in Fig. 1. For nonlinear costs, the minimal shortest
path �‘jmin �

�������������
27kn23

p
. These last results show that the

minimal shortest path �‘jmin across the network grows like
n1=2 when we impose linear costs while it grows like n2=3

when we put a cost on the number of direct connections
between nodes made via the hub (i.e., nonlinear costs).
Corresponding results for the undirected model can be
easily obtained from the equations for the directed model.
For example, for linear costs c � knp and undirected
links, we obtain �‘jmin �

��������
4kn

p
and � �

��n
k

p
for the minimal

shortest path and the optimal connectivity.
The present analysis can be extended to multiple hubs,

N � 2. For simplicity, we focus here on the specific ex-
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ample of constant costs and N � 2 (i.e., hub P, with nodes
connected to it with probability p and hub Q, with nodes
connected to it with probability q) where the cost associ-
ated with each hub has value cp and cq, with cp � cq. The
cost for using both hubs is assumed to be infinite. It is not
hard to imagine real-world systems that employ multiple
central hubs but which would not favor pathways through
more than one at a time (e.g., an airline passenger would
avoid buying a ticket with two stopovers).

We first consider what happens when ‘ > cp � cq. In
this case, both hubs may be used and we may therefore
write:

P�‘<m��PP�‘<m;‘>cp�

�



1�

X‘�cq�1

i�cq�1

PQ�i<m;i>cq�
�
;

�PQ�‘<m;‘>cq�

�



1�

X‘�cp�1

i�cp�1

PP�i<m;i>cp�
�

�PP�‘<m;‘>cp�PQ�‘<m;‘>cq�; (6)

where PP�‘ < m; ‘ > cp� and PQ�‘ < m; ‘ > cq� are
understood to be P�‘ < m; ‘ > c� from the single-hub-
with-cost case for probabilities p and q, respectively.
Substituting Eq. (2) into the first term of Eq. (6) and
performing the summation yields:

PP�‘ < m; ‘ > cp�


1�

X‘�cq�1

i�cq�1

PQ�i < m; i > cq�
�

� �g0pq � g1pq‘� g2pq‘2��apaq�‘�1;

(7)

where

ap � 1� p aq � 1� q

g0pq � �1� p��cp�1� q��cqp2cp��cq � 1�q� 1

g1pq � �1� p��cp�1� q��cqp2�1� �cp � cq � 1�q

g2pq � �1� p��cp�1� q��cqp2q:

An equivalent substitution and summation performed on
the second term in Eq. (6) yields the same answer but with
labels p and q interchanged. The third term, after substi-
tution and summation, yields:

PP�‘<m;‘>cp�PQ�‘<m;‘>cq�� �h0�h1‘�h2‘2�

��apaq�‘�1; (8)

where

h0 � �1� p��cp�1� q��cqp2q2cpcq

h1 � ��1� p��cp�1� q��cqp2q2�cp � cq�

h2 � �1� p��cp�1� q��cqp2q2:
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FIG. 3. Examples of the scaled probability distribution for a
network with N � 2 hubs, where the two hubs have associated
costs for traveling through them. In (a), �p � 20 and �q � 10
while the costs are cp � 0:15 and cq � 0:05. In (b), �p � 50
and �q � 10 while the costs are cp � 0:35 and cq � 0:05.
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Substitution of these individual terms into Eq. (6) yields:
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P�‘ < m� � �g00 � g01‘� g02‘
2��apaq�

‘�1; (9)

where g0i � gipq � giqp � hi. In addition,

P�‘�m��1�
Xcp

i�cq�1

PQ�i<m��
X‘�1

i�cp�1

P�i<m�; (10)

where PQ�i < m� is the single-hub-plus-cost distribution
for a hub with probability q and P�i < m� is given by
Eq. (9). We define the following functions:

fx�a; n� �
Xn�1

i�1

ixai�1

~fx�a; n1; n2� � fx�a; n1� � fx�a; n2�:

Hence we obtain:

P�‘; ‘ 
 cq� �
1

n� 1
(11)

P�‘; cq < ‘ 
 cp� �
1

n� 1
�1� �‘� cq � 1�q

��n� 1� ‘��‘� cq�q2�1� q�‘�cq�1

(12)
P�‘; cp < ‘� �
1

n� 1



1�

q2

�1� q�cq
�~f1�aq; cp � 1; cq � 1� � cq ~f0�aq; cp � 1; cq � 1�� � �g00 ~f0�apaq; ‘; cp � 1�

� g01 ~f1�aqap; ‘; cp � 1� � g02 ~f2�apaq; ‘; cp � 1�� � ��n� 1� ‘��g00 � g01‘� g02‘
2��apaq�‘�1�

�
: (13)
The resulting distribution, which has an interesting
multimodal form, is plotted in Fig. 3 for the directed
case: Q now depends on five variables due to the addi-
tional probability q and cost cq, such that �p � pn,
�q � qn, �p �

cp
n , �q �

cq
n with z as before.

Interestingly, if the value of �q increases above �p the
distribution tends to the single-hub case extremely
quickly—i.e., the P hub is then barely used. If the P hub
has a high degree and a high cost, then the distribution
behaves as though the P hub is not there until ‘ > �p,
where it quickly falls to zero. The undirected case is
similar to the directed case since the same scaling relation-
ship exists.

Elsewhere we will discuss embedding our N-hub cluster
within larger and more complex networks and will present
a quantitative comparison to the transport routings ob-
served within laboratory-grown fungi in an attempt to
understand ‘‘costs’’ within biological networks.
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