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Critical Branching Captures Activity in Living Neural Networks
and Maximizes the Number of Metastable States
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Recent experimental work has shown that activity in living neural networks can propagate as a critical
branching process that revisits many metastable states. Neural network theory suggests that attracting
states could store information, but little is known about how a branching process could form such states.
Here we use a branching process to model actual data and to explore metastable states in the network.
When we tune the branching parameter to the critical point, we find that metastable states are most
numerous and that network dynamics are not attracting, but neutral.
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The brain, though tremendously complex, consists of
many apparently similar neurons. This homogeneity has
led researchers to borrow concepts from physics in an
effort to explain how collective phenomena could emerge
from interactions. For example, several models predict that
neural networks should operate optimally near a critical
point like that in a continuous phase transition [1-4], and
exhibit numerous metastable states like those seen in a spin
glass [5,6]. The critical point may allow optimum infor-
mation transmission within a network [7], while meta-
stable states may be useful for information storage [5,6].

Recent experiments support these predictions. Cultured
brain slices of rat cortex can be kept alive for several weeks
while microelectrode arrays monitor their activity. These
networks are typically quiescent for several seconds, and
then experience a spontaneous burst of local field potential
activity that drives the voltage levels at some electrodes
above a threshold. Within 20 ms, the activity at these
electrodes may spread to other electrodes before the net-
work returns to quiescence and starts another burst. The
total number of electrodes activated gives the size of the
burst. Interestingly, the distribution of burst sizes recorded
over 10 h follows a power law [7], similar to the distribu-
tion of cluster sizes seen at the critical point in a continuous
phase transition [8] or the number of toppled sites in
critical avalanche models [9]. In addition, activity on one
electrode is on average followed by activity on one other
electrode in the next time step. This can be expressed by
the branching parameter, o, which is observed experimen-
tally as the ratio of the number of descendant electrodes to
the number of ancestor electrodes[10]

n
o = descendants ) (1)

nancestors

Subcritical processes (o < 1) produce activity that dies
out, critical processes (o = 1) produce activity that is
nearly sustained, and supercritical processes (o > 1) pro-
duce growing activity. The branching parameter o is very
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close to the critical value of one for cortical cultures [7],
indicating that activity can spread as a critical branching
process [10]. While branching processes are often stochas-
tic [9,10], activity in these cortical cultures does not propa-
gate in a random manner but in preferred paths that are
repeated significantly more than chance over several hours
[11,12]. Actual and shuffled data are compared to estimate
chance occurrence of repeating activity patterns [11,12].
Significantly repeating activity also occurs in noncultured
acute cortical slices [13]. These activation patterns re-
semble the metastable states a broad class of attractor
neural network models generates [5,6], further supporting
the predictions of neural network theory.

These new results from cortical tissue raise several
questions: How do the branching parameter o and the
number of metastable states relate? If such states are useful
for storing information, we expect that brain networks
would operate in a regime where these states are most
numerous. Also, how does the branching parameter influ-
ence network dynamics? While many neural network mod-
els predict that metastable states should have attracting
dynamics [5,6], these dynamics have not been examined
in a branching network.

Methods.—To address these issues, we measured net-
work performance as we swept o from subcritical to
supercritical values. Because manipulating o precisely in
experiments with cortical tissue is difficult, we chose to
pursue these questions using a branching network model.
This model represents each recording electrode by a binary
processing unit that can be either on (1) or off (0), since an
electrode can receive either suprathreshold or subthreshold
input. The model consists of a sheet of N X N processing
units with each unit randomly connected to C other units,
giving the network a recurrent, rather than a feed-forward
[7], architecture. Each connection from unit i to unit j
has a probability p;; of transmitting that is randomly
chosen and then fixed. In this context, the branching pa-
rameter of unit i is given by the sum of probabilities
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emanating from that unit:

c
o= pij 2
=

where 0 = p;; = land 0 = o; = C. 0; is equivalent to the
expected number of descendants an active unit i produces
[10]. Transmission probabilities for each unit are not gen-
erally the same, but we constrain the sum of these proba-
bilities so that o; = o for all i to set the branching
parameter for the entire network (o). Unit j at time step
t + 1 becomes active only if unit i in the previous time step
t is active and the connection between them transmits. A
connection transmits if rand =< p;;, where rand is a uni-
formly distributed random number drawn from the interval
[0, 1]. Processing units update at each time step to simulate
the propagation of activity through the network. Even
though the network is nondeterministic, certain preferred
patterns of activity can develop as a result of the fixed
underlying transmission probabilities. A network can op-
erate in ‘“‘spontaneous’”’ mode where each unit has a small
probability of being spontaneously active (pgpon = 0.001)
[7]. We use this mode to examine how the branching
parameter influences the burst size distribution. Alterna-
tively, a network can operate in “driven” mode where a
subset 7 of the N2 units (n < N?) receives a random binary
input configuration at the same time step. The choice of
N, C, and o determines network type. This model does not
account for detailed neural circuitry underlying the local
field potentials recorded at the electrodes, which has been
explored elsewhere [14]. Rather, it seeks to capture only
those features of the network that are accessible from the
microelectrode data. This intentionally parsimonious ap-
proach reveals general features that might lead to a uni-
versal class of network behaviors. As we will show, some
model details do not affect the results.

We define a metastable state as a set of network out-
put configurations that are more similar to each other than
we would expect by chance. We extract such states with
procedures similar to those previously used to identify
significantly repeating activity patterns in data from liv-
ing neural networks [11,12]. Briefly, a network operates
in driven mode with n randomly chosen input units. The
activity of the network evolves over T time steps and we
record the status of n output units, randomly chosen but
excluding input units, as the binary output configuration.
We repeat this process m times. Similarity between out-
put configurations ' = (0}, @), @}, ... ®,) and O/ =

. w}) can range from O to 1, defined as their

((u{, wé, w3, ..
intersection divided by their union, as in [15]:
(QF, )

im(Q, Q) =
S im(€), V) QL O + (7, QY — (QF, QJY’

3

where (-, -) indicates a dot product. We then clustered the m
output configurations using a greedy algorithm and com-

pared them to 20 sets of m clustered configurations ob-
tained from shuffled network output. To assess the
probability of chance agreement, we shuffled the network
output using event-count matched shuffling, a method that
produces the fewest false positives for neural data [11,16].
We declared any cluster of output configurations with a
higher average similarity value than all clusters produced
by 20 shuffled data sets significant at the p << (0.05 level
and considered it a metastable state. The similarities of all
output configurations with each other are visualized in a
similarity matrix Mg, where each element is given by:
Mg (i, j) = Sim(Q', ).

To quantify network dynamics, we measure the rate of
divergence of trajectories in phase space by estimating a
Boolean version of the Lyapunov exponent A similar to that
used by Derrida [17,18]. We apply a random input con-
figuration to the network and follow the network’s re-
sponse over T time steps. While following this trajectory,
we repeatedly apply a small random input perturbation that
differs from the current network configuration by a
Pythagorean distance d;,. We then measure the resulting
distance between trajectories, d,,, a few time steps after
the perturbation. The Boolean Lyapunov exponent in
bits/time is then:

A= L3 log,(ou 4
3 (G @
where 7 is the number of perturbations[18,19].
Results.—We tested whether this parsimonious model
generated burst size distributions and metastable states
similar to those seen in living networks. Because the
data showed critical branching and were recorded with a
60-channel microelectrode array, we used o = 1 and N? =
64 to simulate experimental results. We also used C = 64,
because in the data activity in a given electrode sometimes
preceded activity in every other electrode, indicating pos-
sible functional connections between all units. Figure 1(a)
shows a model with these parameters produces a power law
distribution of burst sizes with a slope near —3/2 as in
experimental neural networks [7]. In addition, the model
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FIG. 1. Power law distribution of burst sizes from cultures.

(a) Normal cultures correspond to o = 1 in the model. Dashed
line gives slope = —3/2. (b) Cultures made supercritical by
picrotoxin (2 uM) display a peak near S = 60. The model
reproduces experimental data from [7].
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mimicked the doubly peaked distribution produced when
we bathed the cortical cultures in picrotoxin, an agent that
selectively blocked inhibition and increased o [Fig. 1(b)]
[7]. The hump in the distribution near S = 60 is caused by
activity that propagates over the entire electrode array
before dying out. The model also produced similarity
matrices and metastable states similar to those in living
networks (Fig. 2), suggesting that the simple branching
network qualitatively captured salient features of cortical
slice culture.

Using this model, we determine the branching pa-
rameter’s influence on the number of metastable states.
We ran simulations in driven mode increasing o from
0.00 to 3.00 in increments of 0.02. For small networks
(N? < 64) the number of metastable states peaked at
clearly supercritical values of o [0 = 1.6; Fig. 3(a)],
but for larger networks this peak gradually approached
the critical value of o = 1.0 [for N* = 2500, o = 1.00;
best least-squares fit single exponential for all data: o =
1.03 = 0.01, mean * s.d., R* = 0.98; Fig. 3(b)]. While
most of these simulations used few connections to reduce
computation times (C = 4), increasing C to 16 or 32 did
not change appreciably our results [Fig. 3(b)].

The similarity matrices the three types of networks
produced offer an intuitive explanation of these results.
Subcritical networks have units weakly coupled so their
activity is uncorrelated, producing few output configura-
tions that share more than chance similarities [Fig. 2(b),
left]. In contrast, supercritical networks have units con-
nected so strongly that activation of any unit usually acti-
vates the whole network. The one resulting metastable
state was highly ordered, but inhibited other states
[Fig. 2(b), right]. When the branching parameter was criti-
cal (o = 1.0), a mixture of variety and order prevailed,
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FIG. 2. Model reproduces metastable states in culture.
(a) Similarity matrix from cortical cultures. Darker pixels along
the diagonal indicate similar output configurations, while boxes
selected by the clustering algorithm indicate possible metastable
states. (b) Similarity matrices from the model. The critical
matrix resembles experimental data, with most boxes high-
contrast. The contrast of a box typically predicts its statistical
significance, which we determine by comparison to shuffled data
[11,12]. Experimental data from [7].

allowing several different clusters of output configurations
to achieve significance [Fig. 2(b), center], thus maximizing
the number of metastable states.

We also investigated dynamics in the branching net-
works. For all networks, the Boolean Lyapunov exponent
A did not settle at one value, but wandered itinerantly near
a mean (Fig. 4) [20]. In critical networks, this mean was
indistinguishable from zero (o = 1, A =0), producing
neutral dynamics on average. By neutral, we mean that
the distance between nearby trajectories remained nearly
constant over time. Supercritical networks had chaotic
dynamics (o> 1, A = 0), where small initial distances
between trajectories were amplified over time. Subcritical
networks had attracting dynamics (o < 1, A = (), where
distances between trajectories shrank over time. Thus the
branching parameter determined three dynamical regimes.

Bursting in cortical slice cultures differs from the more
continuous activity seen in awake, behaving animals [21].
However, others have shown that when ~0.6 cm? slabs of
cortical tissue in vivo are isolated by cutting from incoming
connections, they burst in ways remarkably similar to
cortical cultures [22]. When slabs are made larger, burst-
ing becomes more frequent, suggesting that slabs the size
of the entire cortical mantle would produce continuous
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FIG. 3. The number of metastable states is maximal at the
critical point. (a) Number of metastable states plotted against o
Peaks become sharper and closer to o = 1.0 for larger networks.
(b) The number of metastable states is maximal at o = 1.0
for largest network, regardless of the number of connections
per unit (4, 16, 32). Fit for all data asymptotically approaches
o =103 £0.01.
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FIG. 4. At the critical point, dynamics hover itinerantly near
neutral. Local time estimate of the Boolean Lyapunov exponent,
A over 500 time steps for different values of o. For upper,
middle, and lower traces A = 0.0887 * 0.0329, 0.0086 *
0.0364, —0.1282 = 0.0423, respectively. The network has N =
80, C = 40.

background activity [22]. Such work strongly implies that
local cortical networks in isolation intrinsically burst.
Nevertheless, because in vitro and in vivo activity patterns
are different, caution should be exercised when extrapolat-
ing the results of this model to information processing in
the awake, behaving brain.

In conclusion, our parsimonious branching network
model captures both the critical power law distribution of
burst sizes and the metastable states seen in cortical cul-
ture. This model shows that the number of metastable
states is maximal when the branching parameter is critical,
perhaps for the same reason that cluster size diversity is
maximized at critical probability in percolation models
[23]. While the dynamics of metastable states in living
neural networks are still unknown, that network dynamics
at the critical point are neutral rather than strongly attract-
ing contrasts with previous neural models which used
attracting dynamics to implement content-addressable
memory [5,6]. Although neutral dynamics cannot easily
support content addressability, they can support rapid,
parallel computations with invariant output [24] and allow
maximal control without sacrificing stability. Metastable
states which store information [11] need not have attracting
dynamics.

Previous work using a feed-forward branching network
model also showed that information transmission is maxi-
mal at the critical point [7], corresponding to the well-
known result that the correlation length diverges at the
critical point during a continuous phase transition [8] and
is consistent with A = 0, which we interpret to mean that
there is minimal information loss about the initial condi-
tions of a trajectory[25]. Together, our findings suggest that

small cortical networks operate near the critical point to
simultaneously optimize information storage and trans-
mission, two functions that are crucial for neural compu-
tation [26].
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