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Dispersive Terahertz Gain of a Nonclassical Oscillator:
Bloch Oscillation in Semiconductor Superlattices
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We have directly determined the spectral shape of the complex conductivities of Bloch oscillating
electrons by using the time-domain terahertz (THz) electro-optic sampling technique, and presented
experimental evidence for a dispersive Bloch gain in superlattices. This unique dispersive gain without
population inversion arises from a nonclassical nature of Bloch oscillations; that is, the phase of the Bloch
oscillation is shifted by �=2 from that of the semiclassical charged harmonic oscillation when driven by
the same ac field. By increasing the bias electric field, the gain bandwidth reached �3 THz in our
particular sample.
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FIG. 1. Comparison between a semiclassical charged har-
monic oscillator (HO) and a Bloch oscillator (BO). (a) shows
a physical model of a charged HO and (b) is its potential dia-
gram. The complex conductivity spectrum of the charged HO is
schematically illustrated in (c). (d), (e), (f) depict an energy band
diagram of a biased superlattice, the E-k dispersion curve, and
the complex conductivity spectrum of the BO, respectively.
Semiconductor superlattices (SLs) [1], in which two
semiconducting materials with different electron affinities
are periodically layered by using ultrafine epitaxy technol-
ogies, provide an ideal laboratory to study electron trans-
port in solids under high electric fields [2–17]. In SLs,
since the energy-momentum (E-k) dispersion for electrons
is folded at k � integer multiples of �=d (d, the period of
superlattice), a new Brillouin zone which is much narrower
than that of the host crystals is formed. Consequently,
when dc electric fields are applied to SLs, electrons are
easily accelerated to the edge of the reduced Brillouin zone
and experience Bragg reflection periodically. As a result,
electrons oscillate both in the momentum and the real
space, as first predicted by Bloch [18] and Zener [19].
Recent ultrafast laser spectroscopy experiments [13–17]
have unambiguously demonstrated that electrons do per-
form a few cycle Bloch oscillations in SLs, but, at the same
time, that the oscillations decay within a few picoseconds.
From semiclassical electromagnetism, it is well known that
it is not possible to extract a net power from damped
charged harmonic oscillators. Because of this automatic
thinking, it has often been thought that generation/ampli-
fication of terahertz (THz) electromagnetic waves by
Bloch oscillators will never be possible.

In contrast to this common anticipation, we would like to
show that Bloch oscillators have an essentially different
nature from that of semiclassical charged harmonic oscil-
lators and that it is indeed possible to extract a net gain
from Bloch oscillations in SLs. By free-space THz electro-
optic (EO) sampling method [20,21], we have directly
determined the spectral shape of the complex conductiv-
ities of Bloch oscillating electrons and confirmed that the
real part of the dynamical conductivity goes negative be-
low the Bloch frequency.

In general, damped oscillation of polarization is often
described by a charged semiclassical harmonic oscillator,
as schematically illustrated in Fig. 1(a). The equation of
motion for such a system is expressed as
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where x�t� is the coordinate of the oscillating charge, � the
eigenfrequency of the charged oscillator, � the relaxation
time, m the mass of the oscillating charge, f�t� the external
electric field, and e the elementary charge. It is well known
that, if the oscillator is driven by an ac field at a frequency
!, the real part of the complex conductivity, Re���!��, has
a Lorentzian line shape and the imaginary part of the
conductivity, Im���!��, is dispersive, as schematically
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shown in Fig. 1(c). Therefore, the semiclassical charged
harmonic oscillator has a maximum loss at its eigen-
frequency and no gain can be extracted.

When an appropriate dc electric field F is applied to a
SL, electrons are accelerated in the ground miniband, as
illustrated in Figs. 1(d) and 1(e). If we approximate the E-k
dispersion of the ground miniband by a cosine function
[see Fig. 1(e)], electrons in a SL are accelerated as �h _k�t� �
eF on a dispersion curve given by E�k�t�� � ��1�
cosdk�t��=2 [ �hk�t�, the crystal momentum of a Bloch os-
cillating electron and �, the miniband width]. Further-
more, the nonequilibrium electron distribution function
g�k; t� satisfies the following Boltzmann equation:

@g�k; t�
@t

�
eF
�h
@g�k; t�
@k

� scattering term: (2)

If we approximate the scattering term by using an energy-
and a momentum-relaxation time, �e and �m, respectively,
and solve Eq. (2) by using the balanced equation method,
the following specific equation for the drift velocity of the
electron system can be derived [22],
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where V�t� is the electron velocity averaged by the distri-
bution function g�k; t�,!B the Bloch frequency (�edF= �h),
and � the low-field mobility along the SL axis. When
Eq. (3) is compared with Eq. (1), it is noticed that they
have almost an identical form. However, there is a crucial
difference; that is, Eq. (3) is a differential equation with
respect to V�t�, whereas Eq. (1) is one with respect to x�t�.
This means that, when an electric field is applied, electrons
both in semiclassical charged harmonic oscillator and in
SLs oscillate but with a �=2-phase difference. This is the
essential point of the nonclassical nature of Bloch oscil-
lators. Consequently, the real and the imaginary part of the
complex conductivities for semiclassical harmonic oscil-
lators are swapped with each other in SLs. This fact leads
to a very important implication that Re���!�� of Bloch
oscillating electrons becomes dispersive, while Im���!��
has a Lorentzian shape, as schematically illustrated in
Fig. 1(f). If this is the case, Re���!�� of Bloch oscillating
electrons becomes negative below �!B and Bloch oscil-
lators do have a THz gain.

Very recently, Shimada et al. [23] and Savvidis et al.
[24] have presented strong experimental supports for such
a Bloch gain. However, both works did not definitively
show negative Re���!��. In this work, we have determined
the spectral shapes of complex high-frequency conductiv-
ities of Bloch oscillating electrons by using time-resolved
THz-EO sampling technique and presented strong evi-
dence that Bloch oscillating electrons have a dispersive
gain for electromagnetic waves in the THz range.

The samples used in this work were prepared by growing
500 nm thick undoped GaAs=Al0:3Ga0:7As superlattice
05740
layers on n�-GaAs substrates by molecular beam epitaxy.
We have studied four different SL structures and obtained
basically the same results. Therefore, in this Letter, we will
show the results on a SL with 6.5 nm thick GaAs wells and
2.5 nm thick Al0:3Ga0:7As barriers. The ground miniband
of this sample was 30 meV wide and was separated from
the first excited miniband by a 100 meV wide minigap. The
top and the bottom contacts were formed by depositing a
semitransparent NiCr Schottky film and AuGeNi=Au
layers, respectively. By using these two electrodes, a static
bias electric field F was applied to the undoped SL region.
When a femtosecond laser pulse excites the sample,
electron-hole pairs are optically injected into the miniband.
Because of an applied electric field, the carriers start drift-
ing and a THz electromagnetic wave that is proportional to
the carrier acceleration is emitted into free space. Since the
miniband width for heavy holes is much narrower than that
for electrons, heavy holes are almost localized. Further-
more, absorption due to light holes is 1=3 of that due to
heavy holes. Consequently, the motion of electrons domi-
nates the emitted THz signal.

The THz radiation was detected by using THz-EO
sampling technique [20,21]. This technique was chosen
since the spectral response of electro-optic crystals
(EOXs) can be accurately predicted and, if properly de-
signed, THz waveforms can be recorded with small spec-
tral distortion. In our experiment, a 100 �m thick ZnTe
crystal was used as the EOX, which has a rather flat
response up to 4 THz. In the EOX, a birefringence propor-
tional to the amplitude of an electric field (Pockels effect)
is induced by an incident THz radiation. The waveform of
the THz electric field was obtained in the time domain by
the balanced detection of the probe lights polarized along
the two principal axes of the EOX. The pump and the probe
pulses were delivered from a mode-locked Ti:sapphire
laser (pulse width �100 fs). The loosely focused pump
beam was incident on the SL surface and its power was set
to be �4 mW to minimize the field screening effect by the
photoexcited carriers. The pump photon energy was ad-
justed to be 1.605 eV, which is close to the bottom of the
ground miniband [17]. The detection bandwidth of our
experimental setup was �4 THz, which was limited both
by the characteristics of our 100 �m thick ZnTe EOX and
by the energy uncertainty of the femtosecond pump laser
pulses. The sample was cooled at T � 10 K.

Figure 2 shows the waveforms of the THz electric field,
ETHz, emitted from the SL sample measured at various
F, ranging from 1 to 39 kV=cm. As seen in the figure,
ETHz is initially positive and, then, becomes negative. For
9 kV=cm<F < 29 kV=cm, clear oscillations appear in
the trailing part and their period becomes shorter with
increasing F. Since we create electrons close to the bottom
of the ground miniband, the photoexcited electrons are first
accelerated by the electric field and, subsequently, decel-
erated when they go beyond the inflection point of the E-k
dispersion. They continue this acceleration/deceleration
cycle due to periodic Bragg reflection until the coherence
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FIG. 3. The real and the imaginary parts of the Fourier spectra
of the emitted THz waveforms normalized by F ( � ETHz�!�=F)
are shown for various F (3–25 kV=cm, 2 kV=cm step) in (a)
and (b), respectively. Since the critical field for the onset of
negative differential conductivity Fc of this sample is
�1:2 kV=cm, the minimum electric field plotted in (a) and (b)
already exceeds Fc. In (c), a typical ETHz�!�=F is picked up
(F � 11 kV=cm; full and open circles) and compared with the
conductivity spectrum calculated by using a theory developed
by Ktitorov et al. (solid and dashed lines) (Ref. [3]). The parame-
ters used in the calculation are listed in the lower right of the
figure. (d) compares the dip frequency ( dip, dots) with the
Bloch frequency (�edF=h, line). Since edF=h was determined
by dividing the applied voltage by the number of period of the
SL (55 for the present sample), it is free from the error in the
layer thickness of the sample. The dip frequency,  dip-calc, cal-
culated by taking account of the effect of scattering (Ref. [3]) is
also plotted by a dashed line.
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FIG. 2. The waveforms of the THz radiation emitted from the
SL sample recorded for various bias electric fields, F (1–
39 kV=cm; 2 kV=cm step). The traces are shifted for clarity.
For very low electric fields (<3 kV=cm), we had to apply large
positive voltages to the surface Schottky junction (for example,
�0:9V for F� 1 kV=cm) and a significant forward bias current
(of the order of a few mA) started flowing through the sample.
Therefore, we could not obtain reliable THz signals for F <
3 kV=cm due to nonuniformity in the bias electric fields across
the sample.
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of the oscillation is lost. Such an anticipated behavior is
well reproduced in the ETHz traces. Furthermore, the os-
cillation period is roughly consistent with the expected
Bloch frequency. A more detailed discussion on the oscil-
lation frequency will be made later. For F > 25 kV=cm,
the oscillatory behavior gradually vanishes because the
oscillation frequency exceeds the bandwidth of our mea-
surement setup.

At this stage, we would like to recall the fact that the
time-domain THz emission experiments inherently mea-
sure the step response of the electron system to the applied
electric field, as described in more detail in Ref. [23]. By
noting this important implication, we formulate the THz
emission process as follows: the creation of step-function-
like carrier density by femtosecond laser pulses in the
actual process is replaced with the application of a step-
function-like electric field in the thought experiment as

F�t� � F��t�; ~F�s� � F=s; (4)

where the variables with~denote their Laplace transforma-
tion. The transient current by the photoexcited electrons in
05740
the miniband is given by

~J�s� � ~��s� ~F�s�; (5)

then the emitted THz electric field ETHz can be obtained as

ETHz�t�/
@J�t�
@t

�
1

2�i

Z c�i1

c�i1
sets ~��s�

F
s
ds���t�F; (6)

where ��t� is the electron conductivity in the time domain.
The important message of Eq. (6) is that the real and the
imaginary part of the Fourier spectra of ETHz�t�=F (i. e.,
Re�ETHz�!�=F� and Im�ETHz�!�=F�) are proportional to
Re���!�� and Im���!��, respectively.

Figs. 3(a) and 3(b) show Re�ETHz�!�=F� and
Im�ETHz�!�=F� obtained from the experimental data
shown in Fig. 2, respectively. In the Fourier transformation
process, the position of t � 0 is very crucial. We have
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determined t � 0 by finding the position where artifi-
cial phase jumps in the Fourier spectra do not appear. By
doing so, t � 0 could be determined within a phase error
of ��=9. As expected from the previous discussion,
Re�ETHz�!�=F� indeed has a dispersive curve and shows
a negative value up to �3 THz. This is clear experi-
mental evidence for the dispersive Bloch gain in SLs.
At the crossover frequency where the Re�ETHz�!�=F�
trace changes its polarity from negative to positive,
Im�ETHz�!�=F� shows a clear dip (we will call this fre-
quency  dip). It is noticed that the spectral shape of
Im�ETHz�!�=F� is not a simple Lorentzian. This is because
Eq. (3) was derived by assuming a constant bias electric
field for simplicity. If we take into account an effect of a
small ac drive field within a linear response regime, the
spectral shapes of ��!� are slightly affected. In Fig. 3(c), a
typical example of the measured complex conductivity
spectrum is picked up (F � 11 kV=cm) and compared
with a theory that takes into account a small ac drive field
[3]. The parameters used in the calculation were chosen to
obtain a best fit to the experimental data. It should be noted
that the measured ��!� spectrum is in excellent agreement
with theory.

In Fig. 3(d),  dip of Im�ETHz�!�=F� and the expected
Bloch frequency,  B (�edF=h), are plotted as a function
of F. As seen in the figure,  dip is significantly (�40%)
smaller than  B. We believe this discrepancy originates
from at least two factors; one comes from the fact that  dip
deviates from  B due to a rather short �m in actual SLs
[22,25]. This effect was estimated by calculating the con-
ductivity spectra for various F, as done in Fig. 3(c). The
calculated dip frequency,  dip-calc, was plotted by a dashed
line in Fig. 3(d). Although scattering indeed suppresses the
dip frequency below  B, its effect is less than 10% (typi-
cally, only a few %). The other factor is the excitonic effect
[26]. Since both electrons and holes are excited in our
experiment, the excitonic effect cannot be neglected and
leads to a reduction in the energy separation between the
Wannier-Stark levels by a few meV [26]. As a result,  dip
becomes smaller than  B.

In summary, we have directly determined the spectral
shape of the complex conductivities of Bloch oscillating
electrons by using the time-domain THz-EO sampling
technique, and presented experimental evidence for a dis-
persive Bloch gain in SLs. This unique dispersive gain
without population inversion arises from a nonclassical
nature of Bloch oscillations; that is, the phase of the
Bloch oscillation is shifted by �=2 from that of the semi-
classical charged harmonic oscillation when driven by the
same ac field. By increasing the bias electric field, the gain
bandwidth reached �3 THz in our particular sample. This
result strongly encourages an idea of Bloch oscillators/
amplifiers, which are frequency tunable from a few hun-
05740
dred GHz to a few THz and cover a low-THz frequency
range that is not easily accessible by quantum cascade
lasers [27–29].
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