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Ground-State Energy of the Electron Liquid in Ultrathin Wires
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The ground-state energy and the density correlation function of the electron liquid in a thin one-
dimensional wire are computed. The calculation is based on an approximate mapping of the problem with
a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach
becomes asymptotically exact in the limit of a small wire radius but remains numerically accurate even for

modestly thin wires.
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Recently much attention has been devoted to a class of
one-dimensional (1D) conductors that can be termed ultra-
thin wires. Examples of such systems include single-wall
carbon nanotubes (CN) [1], semiconductor nanowires [2],
and conducting molecules [3]. Semiconducting ultrathin
wires are especially interesting because their electron con-
centration n can be varied by the field effect, which can be
used for creating miniature electronic devices [4,5]. In such
applications a fundamental role is played by the concen-
tration dependence of the ground-state energy density &(n).
This function determines the electrostatic screening and
affects the capacitive coupling of the electron liquid to
external voltage sources. It is also a core input of the
density-functional theory (DFT), which is the basis of
today’s electronic structure calculations. Since the 3D
Fermi-liquid theory does not hold in 1D, it is unclear
whether the usual DFT optimized for three-dimensional
(3D) systems is adequate for ultrathin wires. The Luttinger
liquid (LL) theory [6], which is called upon to replace the
Fermi-liquid theory, makes no predictions for the short-
range physics that determines e(n). Therefore, the calcu-
lation of the ground-state energy of 1D wires with realistic
Coulomb interactions has remained an open problem. The
primary difficulty is the computation of the correlation
energy €., which is determined by the shape and size of
the exchange-correlation hole (XCH), i.e., the reduction in
probability of any two electrons closely approaching each
other. Below we propose a theory that calculates these
quantities.

Model.—Our calculation is done for an N-component
electron gas, N being the combined spin-valley degeneracy
of the electron spectrum. For example, N = 4 in CN [1].
The aforementioned XCH is the term that refers to the
negative dip of the two-body cluster function %(x) around
x=0. Here h(x) = Mn)"'S . (6(x; —x; —x)) — 1, M
is the number of electrons, and x; are their coordinates.
Larger |h(0)] imply stronger correlations. Since
[*o h(x)dx = —1/n, the XCH has a characteristic width
L, ~ 1/n|h(0)|. For example, in the free Fermi gas h(x) =
—Nsin?(nx/N)/n’x?, so that |h(0)] = 1/N and [, is equal
to N/n, the average distance among electrons of the same
species or, as we call it, the same isospin. Our goal is to
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compute h(x) for an interacting system. Once h(x) is
known, &(n) can be obtained straightforwardly; see below.

We model the interactions by the potential U(x) =

e?/k+x* + R>, which accounts for smoothing of
Coulomb repulsion at distances of the order of the wire
radius R. The wire is considered ultrathin if the parameter
L =1In(ag/R) is large, where ay = h’k/me*, m, and k
are the effective Bohr radius, electron mass, and dielectric
constant, respectively. On general grounds, we may expect
that at low densities, n << 1/ag, electrons should form a
1D Wigner “crystal” [7] with h(x) sharply peaked at
integer multiples of a = 1/n. At n > 1/ay where elec-
trons have a large kinetic energy, h(x) should remain
appreciable down to x << a. Below we refine and flesh
out this qualitative picture by quantitative calculations.

Crucial for our approach is the fact that to the leading
order in 1/ L the problem in hand and the problem with the
contact interaction, U(x) = (h*c/m)d(x), give the same
short-range behavior of the correlation functions, including
the XCH. Here c is given by

¢ = (2/ap)In(l./R). )

This remarkable mapping between the two interaction laws
holds only in the liquid state, n > 1/ag. The reason for it
becomes clear if one carefully separates the effects of the
sharp maximum (“‘core”) of the Coulomb potential U(x) at
x = 0 from those of its 1/x tails. As was shown in our
earlier work [8], the condition n > 1/ay guarantees that
the Coulomb tails have negligible effects on A(x) up to
exponentially large distances, In(x/a) ~ 1/r,, where r, =
a/2ap < 1. Since r, plays the role of the dimensionless
coupling constant, this agrees with the conventional wis-
dom. On the other hand, the electron scattering caused by
the short-range core of U(x) is enhanced [8] by the large
logarithm L. Therefore, the Coulomb potential acts as a
sum of a strong short-range core and weak tails, and so can
be mapped onto a suitable é function.

The rest of the Letter is organized as follows. We begin
by studying certain limiting cases, which verify the cor-
rectness of our choice (1) of the coefficient c. We then
explain how our theory can be used to calculate () at all
ry < 1. We proceed to the study of the large-r, Wigner
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crystal where the mapping onto the contact-interaction
model is no longer valid. We show that the exact asymp-
totics of &(n) in the r, > 1 limit can nevertheless be
derived while at r; ~ 1 a simple variational approximation
can be used. We also present a numerical scheme that
unifies all the asymptotical formulas we obtain. It yields
a seamless interpolation over the entire range of n even for
L ~2-3. We take it as evidence that our theory remains
numerically accurate even for modestly thin wires, which
may stimulate its use in practical DFT calculations.
(Achieving large L is feasible [8] but technically difficult.)

Definitions.—We do the usual subtraction of the Hartree
term in the definition of the energy density, e(n) =
L™ '[(H) — U(0)n?/2], where L is the length of the wire,
H is the Hamiltonian, and the tilde denotes the Fourier
transform. We further define the correlation energy density
€. as the difference between & and the sum of the kinetic
g and the exchange ¢, energies of the Fermi gas,

Kk N

B n’ e n? N
€0

Tz = In—+A4;)
6 mnNT "Rn T> @
where Ay = % — vy — In7m = —0.222, and v is Euler con-
stant [9].

The relations among &...(n), h(x), and the dielectric
function (g, w) are (see, e.g., Ref. [10], Secs. 5.4 and 5.6)

rodrg gin(n, ry, N)

Exe = &8 T Eer = n3f 3 , 3)
0 I"S n
. f " dxU)h(), @)
0

h(g) = —1—

nl;i(q) ﬁ" dflm[ﬁ} ®

RPA regime.—The validity of our mapping between the
Coulomb and the contact interactions can be verified by an
independent method if the limit of large N (actually, large
N?) is taken. We discuss it because it is not only an
instructive example but also the case relevant for CN,
where N2> = 16. For large N, €(g, w) is dominated by the
random-phase approximation (RPA) [10], which sums or-
der by order the diagrams with the largest number of
fermion loops. For g > kp = @n/N the result is

2nE(q)U(q) n’q’
, E(@g=—— (6
Pl -tatiop ‘@=7%, ©
Combined with Eq. (5), it entails that at £ < nag < N> L

(the RPA regime), the XCH has the depth |A(0)| =
(anl.)~" and a characteristic width

l. = +/ag/2n1n(l./R). (7

The XCH is much deeper than in the Fermi gas, |4(0)| >
1/N, and so the correlations are strong; yet |2(0)] < 1, so
that the RPA is still reliable. From Eq. (4) we find, to the
leading order in 1/N,

(g w)=1+

2 el | L\ 1732 )
SR L O] R
Repeating the same calculation for the contact interaction
with ¢ given by Eq. (1), we obtain exactly the same result.
To track down how this comes about, it is convenient to do
the integration in Eq. (4) in the ¢ space. The interaction
potential enters through its Fourier transform U(g) =
(2€?/k)In(1/gR), which is a slow function of g. The
integral is dominated by g ~ 1/I,, and so to the leading
order in L7, U(g) can be replaced by the U(1/1,), i..,
U(x) — (h*c/m)d(x), as we claimed above.

The RPA eventually breaks down at small n, where it
predicts 2(0) to drop below the strict lower bound of —1
required by the non-negativity of the electron density. This
places the lower boundary of the RPA regime at n ~
L /mag. What happens at lower n is discussed next.

CTG regime.—The case of n << L/ay has, in fact, al-
ready been studied in Ref. [8]. We showed that at such n
electrons should form a correlated state of the Coulomb
Tonks Gas (CTG). The CTG can be defined as the state
where on short length scales electrons behave as impene-
trable but otherwise free. It owes its name to a certain
similarity it enjoys with the Tonks-Girardeau gas of 1D
cold atoms [11]. It is worth mentioning that the long-
distance behavior in the RPA, CTG, and Wigner crystal
regimes is universally the same and is described by the LL
theory. In the limit R — +0, i.e., ¢, L — oo, the ground-
state wave function V¥ factorizes into the isospin part ® and
the orbital part (the remainder) [8]:

T =d x W (—1)2 in” (xos — %07 |
= eV (—1) l_[ [smz(xQ,» ij)} , (9
Qi>Qj

where Q1 through QM are the indices in the spatially
ordered list of the electron coordinates 0 < xgp; <::- <
Xom < L (periodic boundary conditions are assumed),
(—1)€ is the parity of the corresponding permutation,
and A =1 for now. For N = 2, ® coincides with the
ground state of a spin-1/2 Heisenberg chain; for N > 2,
see Ref. [12]. We do not discuss the function W here
because it has negligible effect on h(x) for x <
aexp(1/r,) [8]. Once W is set to zero, ¥ becomes the
ground state of the contact-interaction problem at ¢ = oo
(the gas of impenetrable fermions) [13,14]. This is another
explicit demonstration of our mapping, this time in the
L — oo limit. Note that the XCH has the largest possible
depth of unity and the width /, = a.

For a finite R, W remains the correct approximation to
the ground state to the leading order in L7, r, < 1. We
use ¥ (with W =0) as a trial state to evaluate £(n).
Independent of the form of ®, the result is given by
Eq. (2) with N = 1 (see also Ref. [8]),

2 2

2
e(n) = %nz[ln(Rn) — A+ % %;ﬁ, (10)

which agrees with £(n) for the contact-interaction problem
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to the order 1/L [Eq. (15)], validating our mapping once
again.

Bethe ansatz.—The most remarkable consequence of
the mapping between the Coulomb and the contact-
interaction models is that a unified treatment of all r, <K
1 regimes is possible. This is due to the fact that the latter
model is solvable by the Bethe ansatz [15]. The exact
energy density at any given n is given by [14]

2 2
e(n) = — h—cnz + e dkk?p(k), (11)
2m 2m J-¢

where p(k) is the solution of the integral equation

=l - fQQ Gk~ K)pk),  (12)
Gk) = Wl—N Re[zp(l + zi/_kc> - ¢<ith Cﬂ (13)

Here (z) is the digamma function [9] and Q = Q(n) is
fixed by the constraint n = [ QQ dkp(k). Two analytical
asymptotics of the solution can be obtained [14,16]

hz

2
P> —[——(011)3/2 +
m| 3w

2 .3
%%} c<n<cN,  (14)

n<c, (15)

h2 1 2
:Z[—Ecnz +%n3i|,

in agreement with Egs. (8) and (10). From the theory point
of view, Egs. (1), (7), and (10)—(13) solve the problem of
computing &(n) at all r, < 1. A practical algorithm for
finding the solution is given shortly below.

Wigner crystal. —At very low densities, rg > 1, the
mapping onto the contact-interaction problem is, however,
invalid. The tails of the Coulomb barriers that separate
nearby electrons are strong enough to keep them at almost
equidistant positions (although the long-range order is
eventually destroyed by fluctuations). According to the
standard strong-coupling perturbation theory, the ground-
state energy in this regime is equal to the Madelung sum
plus the zero-point phonon energy,

e’ e 1/2
e =—n’[In(Rn) — Ay] + Cph—ns/zag , (16)
K K

where Ay = In2 — y = 0.116 and Cp,, = 1.018. As for the
cluster function A(x), it can be obtained by interpolating
between the collective phononlike correlations at x = a
and two-body correlations at x < a (see, e.g., Ref. [17]).

Variational and numerical interpolation.—Until now
we expanded on a formalism that gives results both for
&(n) and for A(x) that are rigorously correct to the leading
order in a suitable small parameter, either 1/L or 1/r,.
These results, e.g., the functional form of £(n) in various
regimes [Fig. 1(a)], have an academic or methodological
interest. In the remainder of this Letter we shift the focus to
a more pragmatic goal. We wish to find a computational

scheme that gives an accurate numerical approximation to
the same quantities when neither £ nor r, are truly large.
We achieve this by combining a variational method with a
numerical interpolation. Some results are shown in
Figs. 1(b) and 1(c). The concrete interpolation scheme
used in generating these plots is as follows. For r; < 2,
e(n) is calculated by numerically solving Egs. (1) and
(11)—(13) with I, = exp(A7)/QO(n, ¢). Note that function
Q(n) has the following limiting forms: Q = 7n for n < c,
Q =2./nc for c < n < cN? and Q = 7n/N for n >
cN?. This entails that our choice of I, is exact at small
and large n, and is adequate everywhere in between; see
Egs. (2), (7), and (10).

All that remains is to handle the r; = 2 regime where the
crossover between the CTG and the Wigner crystal occurs.
Our solution is to treat A in Eq. (9) as a variational
parameter. This ensures a smooth transition from the
CTG (A = 1) to the Wigner crystal (A >> 1), provides a
strict upper bound on &(n), and can be done semianalyti-
cally. Indeed, the energy density of the state W(A) is the
sum of the kinetic &)i' and the potential & terms. By
virtue of a formula similar to Eq. (3), &/ can be computed
differentiating the known energy density £cg(A) in the
Calogero-Sutherland model [18] with respect to its cou-
pling constant ¢ = A(A — 1),

ad m Pnd A3

To get %, we calculate it at A = % 1, 2, and oo using the
exact cluster functions A(x) [19] and interpolate between

the obtained four values by a cubic polynomial in A~!,

(@) e
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FIG. 1. (a) Qualitative behavior of &(n). (b) & in units of

e?/ka} for ag/R = 10,15,20 (top to bottom), evaluated nu-
merically. (c) The low-density part of the same plot; solid lines
are from the variational method, and the dashed lines are from
the Bethe ansatz.

056405-3



PRL 94, 056405 (2005)

PHYSICAL REVIEW LETTERS

week ending
11 FEBRUARY 2005

el = (e2/k)n*[In(Rn) — Ay — a; A~ —a,A72 —azA 3]
For example, in the £ — oo limit we find a; = —0.3173,
a, = —0.02363, and a3 = 0.003 048. The smallness of a,
and a; implies a high numerical accuracy of this polyno-
mial fit. Minimizing &)i} + &% with respect to A (numeri-
cally), we get £(n). The quality of our variational method
can be judged by how well it compares with Eq. (16) in the
rg >> 1 limit. It is easy to see that the functional form of
e(n) is reproduced correctly, but the coefficient in front of
the phonon term is approximately 1.022, i.e., higher than
Con by a mere 0.4%. The results of this procedure, imple-
mented for several values of ag/R, are plotted in Figs. 1(b)
and 1(c) The curves produced by the Bethe ansatz and the
variational method match virtually seamlessly. Thus, the
proposed scheme gives a theoretically well-founded and
numerically accurate DFT needed in applications, some of
which are discussed next.

Implications.—The main physical omission of our theo-
retical model is the screening of Coulomb interactions by
other 1D subbands that may be present in a wire. Such a
screening is averted if « exceeds a certain threshold ky,.
For CN, we estimate kg, ~ NL, e.g., k, ~ 12 for N =4
and £ = 3. Note that « is equal to the dielectric constant
Ko of the medium if the nanotube is immersed in it and is
equal to (ko + 1)/2 if the medium is used as a substrate. If
Kk < Ky, our theory can still apply at sufficiently low =,
e.g., in the Wigner crystal regime.

One possible application of our results for £(n) is a fine-
tuning of the operational parameters of carbon nanoelec-
tronic devices [4,5]. On a crude level, such devices are tiny
capacitors made of CN and control metallic gates. Precise
knowledge of their capacitance per unit length C is desir-
able for their optimal design and efficiency. The quantum
and many-body effects influence the measured value of C
according to the equation (see, e.g., Ref. [20])

Cl=Cyl +(k/Hx !, x ' =0%/on? (18)
where Cy! ~ (2/k) In(2D/R) is the inverse classical (geo-
metric) capacitance and y ! is the inverse thermodynamic
density of states (ITDOS). The quantum correction due to
the ITDOS may be non-negligible if the distance D be-
tween the CN and the gate is small or if n is low, so that
D ~ a. The measurable signature of a finite y ' would be
the n dependence of C. Recently, the capacitance of CN
and their junctions was studied in Ref. [20] by a 3D DFT. It
would be interesting to apply our theory to the same
structures for comparison.

The sign of the ITDOS is determined by the convexity of
the (n) curve. From Fig. 1 we see that at low enough
electron densities ITDOS becomes negative. This phe-
nomenon is a generic feature of a strongly correlated
electron matter [21]. Unlike the case of neutral systems,
here the negative ITDOS does not imply any thermody-
namic instability but leads instead to a small overscreening
of an external electric charge. One possible technique to
detect such an overscreening experimentally is the scanned

probe imaging of the electrostatic potential along an ultra-
thin wire (e.g., the CN [22]) set on a dielectric substrate.
Above the puddles of the electron liquid induced by stray
random charges, one would see the potential of a “wrong”
curvature: higher near the center of the puddle, lower near
its ends. The puddles can be intentionally created by addi-
tional small gates.

Finally, from &(n) one can extract the n dependence of
the LL parameters that influence charge tunneling and low-
temperature transport in 1D wires. Preliminary results and
their comparison with other work in the literature [23] have
been reported in Ref. [8]. A more detailed investigation
that incorporates the results derived in this Letter will be
presented elsewhere [16].
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