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Ground-State Energy of the Electron Liquid in Ultrathin Wires
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The ground-state energy and the density correlation function of the electron liquid in a thin one-
dimensional wire are computed. The calculation is based on an approximate mapping of the problem with
a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach
becomes asymptotically exact in the limit of a small wire radius but remains numerically accurate even for
modestly thin wires.
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Recently much attention has been devoted to a class of
one-dimensional (1D) conductors that can be termed ultra-
thin wires. Examples of such systems include single-wall
carbon nanotubes (CN) [1], semiconductor nanowires [2],
and conducting molecules [3]. Semiconducting ultrathin
wires are especially interesting because their electron con-
centration n can be varied by the field effect, which can be
used for creating miniature electronic devices [4,5]. In such
applications a fundamental role is played by the concen-
tration dependence of the ground-state energy density "�n�.
This function determines the electrostatic screening and
affects the capacitive coupling of the electron liquid to
external voltage sources. It is also a core input of the
density-functional theory (DFT), which is the basis of
today’s electronic structure calculations. Since the 3D
Fermi-liquid theory does not hold in 1D, it is unclear
whether the usual DFT optimized for three-dimensional
(3D) systems is adequate for ultrathin wires. The Luttinger
liquid (LL) theory [6], which is called upon to replace the
Fermi-liquid theory, makes no predictions for the short-
range physics that determines "�n�. Therefore, the calcu-
lation of the ground-state energy of 1D wires with realistic
Coulomb interactions has remained an open problem. The
primary difficulty is the computation of the correlation
energy "cor, which is determined by the shape and size of
the exchange-correlation hole (XCH), i.e., the reduction in
probability of any two electrons closely approaching each
other. Below we propose a theory that calculates these
quantities.

Model.—Our calculation is done for an N-component
electron gas,N being the combined spin-valley degeneracy
of the electron spectrum. For example, N � 4 in CN [1].
The aforementioned XCH is the term that refers to the
negative dip of the two-body cluster function h�x� around
x � 0. Here h�x� � �Mn��1P

i�jh	�xi � xj � x�i � 1, M
is the number of electrons, and xi are their coordinates.
Larger jh�0�j imply stronger correlations. SinceR
1
�1 h�x�dx � �1=n, the XCH has a characteristic width
l	 
 1=njh�0�j. For example, in the free Fermi gas h�x� �
�Nsin2�nx=N�=n2x2, so that jh�0�j � 1=N and l	 is equal
to N=n, the average distance among electrons of the same
species or, as we call it, the same isospin. Our goal is to
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compute h�x� for an interacting system. Once h�x� is
known, "�n� can be obtained straightforwardly; see below.
We model the interactions by the potential U�x� �
e2=�

�����������������
x2 � R2

p
, which accounts for smoothing of

Coulomb repulsion at distances of the order of the wire
radius R. The wire is considered ultrathin if the parameter
L � ln�aB=R� is large, where aB � �h2�=me2, m, and �
are the effective Bohr radius, electron mass, and dielectric
constant, respectively. On general grounds, we may expect
that at low densities, n
 1=aB, electrons should form a
1D Wigner ‘‘crystal’’ [7] with h�x� sharply peaked at
integer multiples of a � 1=n. At n� 1=aB where elec-
trons have a large kinetic energy, h�x� should remain
appreciable down to x
 a. Below we refine and flesh
out this qualitative picture by quantitative calculations.

Crucial for our approach is the fact that to the leading
order in 1=L the problem in hand and the problem with the
contact interaction, U�x� � � �h2c=m�	�x�, give the same
short-range behavior of the correlation functions, including
the XCH. Here c is given by

c � �2=aB� ln�l	=R�: (1)

This remarkable mapping between the two interaction laws
holds only in the liquid state, n� 1=aB. The reason for it
becomes clear if one carefully separates the effects of the
sharp maximum (‘‘core’’) of the Coulomb potential U�x� at
x � 0 from those of its 1=x tails. As was shown in our
earlier work [8], the condition n� 1=aB guarantees that
the Coulomb tails have negligible effects on h�x� up to
exponentially large distances, ln�x=a� 
 1=rs, where rs �
a=2aB 
 1. Since rs plays the role of the dimensionless
coupling constant, this agrees with the conventional wis-
dom. On the other hand, the electron scattering caused by
the short-range core of U�x� is enhanced [8] by the large
logarithm L. Therefore, the Coulomb potential acts as a
sum of a strong short-range core and weak tails, and so can
be mapped onto a suitable 	 function.

The rest of the Letter is organized as follows. We begin
by studying certain limiting cases, which verify the cor-
rectness of our choice (1) of the coefficient c. We then
explain how our theory can be used to calculate "�n� at all
rs 
 1. We proceed to the study of the large-rs Wigner
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crystal where the mapping onto the contact-interaction
model is no longer valid. We show that the exact asymp-
totics of "�n� in the rs � 1 limit can nevertheless be
derived while at rs 
 1 a simple variational approximation
can be used. We also present a numerical scheme that
unifies all the asymptotical formulas we obtain. It yields
a seamless interpolation over the entire range of n even for
L
 2–3. We take it as evidence that our theory remains
numerically accurate even for modestly thin wires, which
may stimulate its use in practical DFT calculations.
(Achieving large L is feasible [8] but technically difficult.)

Definitions.—We do the usual subtraction of the Hartree
term in the definition of the energy density, "�n� �
L�1�hHi � ~U�0�n2=2�, where L is the length of the wire,
H is the Hamiltonian, and the tilde denotes the Fourier
transform. We further define the correlation energy density
"cor as the difference between " and the sum of the kinetic
"0 and the exchange "x energies of the Fermi gas,

"0 �
�2

6

�h2

m
n3

N2 ; "x ’ �
e2

�
n2

N

�
ln
N
Rn

� AT

�
; (2)

where AT � 3
2� �� ln� � �0:222, and � is Euler con-

stant [9].
The relations among "cor�n�, h�x�, and the dielectric

function ��q;!� are (see, e.g., Ref. [10], Secs. 5.4 and 5.6)

"xc � "x � "cor � n3
Z rs

0

drs
rs

"int�n; rs; N�

n3
; (3)

"int � n2
Z 1

0
dxU�x�h�x�; (4)

~h�q� � �1�
�h

n ~U�q�

Z 1

0

d!
�

Im
�

1

��q;!�

�
: (5)

RPA regime.—The validity of our mapping between the
Coulomb and the contact interactions can be verified by an
independent method if the limit of large N (actually, large
N2) is taken. We discuss it because it is not only an
instructive example but also the case relevant for CN,
where N2 � 16. For large N, ��q;!� is dominated by the
random-phase approximation (RPA) [10], which sums or-
der by order the diagrams with the largest number of
fermion loops. For q� kF � �n=N the result is

��q;!��1�
2nE�q� ~U�q�

E2�q����h!� i0�2
; E�q��

�h2q2

2m
: (6)

Combined with Eq. (5), it entails that at L 
 naB 
 N2L
(the RPA regime), the XCH has the depth jh�0�j ’
��nl	�

�1 and a characteristic width

l	 �
�������������������������������
aB=2n ln�l	=R�

q
: (7)

The XCH is much deeper than in the Fermi gas, jh�0�j �
1=N, and so the correlations are strong; yet jh�0�j 
 1, so
that the RPA is still reliable. From Eq. (4) we find, to the
leading order in 1=N,
05640
"xc ’ �
2

3�
e2

�a2B



1

rs

�
ln
�
l	
R

�
�
1

2

��
3=2
: (8)

Repeating the same calculation for the contact interaction
with c given by Eq. (1), we obtain exactly the same result.
To track down how this comes about, it is convenient to do
the integration in Eq. (4) in the q space. The interaction
potential enters through its Fourier transform ~U�q� ’
�2e2=�� ln�1=qR�, which is a slow function of q. The
integral is dominated by q
 1=l	, and so to the leading
order in L�1, ~U�q� can be replaced by the ~U�1=l	�, i.e.,
U�x� ! � �h2c=m�	�x�, as we claimed above.

The RPA eventually breaks down at small n, where it
predicts h�0� to drop below the strict lower bound of �1
required by the non-negativity of the electron density. This
places the lower boundary of the RPA regime at n

L=�aB. What happens at lower n is discussed next.

CTG regime.—The case of n
 L=aB has, in fact, al-
ready been studied in Ref. [8]. We showed that at such n
electrons should form a correlated state of the Coulomb
Tonks Gas (CTG). The CTG can be defined as the state
where on short length scales electrons behave as impene-
trable but otherwise free. It owes its name to a certain
similarity it enjoys with the Tonks-Girardeau gas of 1D
cold atoms [11]. It is worth mentioning that the long-
distance behavior in the RPA, CTG, and Wigner crystal
regimes is universally the same and is described by the LL
theory. In the limit R! �0, i.e., c;L ! 1, the ground-
state wave function � factorizes into the isospin part � and
the orbital part (the remainder) [8]:

� � �� eW��1�Q
Y

Qi>Qj

�
sin
�
L
�xQi � xQj�

�
(
; (9)

where Q1 through QM are the indices in the spatially
ordered list of the electron coordinates 0< xQ1 < � � �<
xQM < L (periodic boundary conditions are assumed),
��1�Q is the parity of the corresponding permutation,
and ( � 1 for now. For N � 2, � coincides with the
ground state of a spin-1=2 Heisenberg chain; for N > 2,
see Ref. [12]. We do not discuss the function W here
because it has negligible effect on h�x� for x

a exp�1=rs� [8]. Once W is set to zero, � becomes the
ground state of the contact-interaction problem at c � 1
(the gas of impenetrable fermions) [13,14]. This is another
explicit demonstration of our mapping, this time in the
L ! 1 limit. Note that the XCH has the largest possible
depth of unity and the width l	 � a.

For a finite R, � remains the correct approximation to
the ground state to the leading order in L�1; rs 
 1. We
use � (with W � 0) as a trial state to evaluate "�n�.
Independent of the form of �, the result is given by
Eq. (2) with N � 1 (see also Ref. [8]),

"�n� �
e2

�
n2�ln�Rn� � AT� �

�2

6

�h2

m
n3; (10)

which agrees with "�n� for the contact-interaction problem
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FIG. 1. (a) Qualitative behavior of "�n�. (b) " in units of
e2=�a2B for aB=R � 10; 15; 20 (top to bottom), evaluated nu-
merically. (c) The low-density part of the same plot; solid lines
are from the variational method, and the dashed lines are from
the Bethe ansatz.
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to the order 1=L [Eq. (15)], validating our mapping once
again.

Bethe ansatz.—The most remarkable consequence of
the mapping between the Coulomb and the contact-
interaction models is that a unified treatment of all rs 

1 regimes is possible. This is due to the fact that the latter
model is solvable by the Bethe ansatz [15]. The exact
energy density at any given n is given by [14]

"�n� � �
�h2

2m
cn2 �

�h2

2m

Z Q

�Q
dkk2*�k�; (11)

where *�k� is the solution of the integral equation

1

2�
� *�k� �

Z Q

�Q
dk0G�k� k0�*�k0�; (12)

G�k� �
1

�cN
Re

�
 
�
1�

ik
Nc

�
�  

�
ik� c
Nc

��
: (13)

Here  �z� is the digamma function [9] and Q � Q�n� is
fixed by the constraint n �

RQ
�Q dk*�k�. Two analytical

asymptotics of the solution can be obtained [14,16]

"’
�h2

m

�
�

2

3�
�cn�3=2�

�2

6

n3

N2

�
; c
n
cN2; (14)

’
�h2

m

�
�
1

2
cn2 �

�2

6
n3
�
; n
 c; (15)

in agreement with Eqs. (8) and (10). From the theory point
of view, Eqs. (1), (7), and (10)–(13) solve the problem of
computing "�n� at all rs 
 1. A practical algorithm for
finding the solution is given shortly below.

Wigner crystal.—At very low densities, rs � 1, the
mapping onto the contact-interaction problem is, however,
invalid. The tails of the Coulomb barriers that separate
nearby electrons are strong enough to keep them at almost
equidistant positions (although the long-range order is
eventually destroyed by fluctuations). According to the
standard strong-coupling perturbation theory, the ground-
state energy in this regime is equal to the Madelung sum
plus the zero-point phonon energy,

" �
e2

�
n2�ln�Rn� � AW� � Cph

e2

�
n5=2a1=2B ; (16)

where AW � ln2� � � 0:116 andCph � 1:018. As for the
cluster function h�x�, it can be obtained by interpolating
between the collective phononlike correlations at x * a
and two-body correlations at x
 a (see, e.g., Ref. [17]).

Variational and numerical interpolation.—Until now
we expanded on a formalism that gives results both for
"�n� and for h�x� that are rigorously correct to the leading
order in a suitable small parameter, either 1=L or 1=rs.
These results, e.g., the functional form of "�n� in various
regimes [Fig. 1(a)], have an academic or methodological
interest. In the remainder of this Letter we shift the focus to
a more pragmatic goal. We wish to find a computational
05640
scheme that gives an accurate numerical approximation to
the same quantities when neither L nor rs are truly large.
We achieve this by combining a variational method with a
numerical interpolation. Some results are shown in
Figs. 1(b) and 1(c). The concrete interpolation scheme
used in generating these plots is as follows. For rs & 2,
"�n� is calculated by numerically solving Eqs. (1) and
(11)–(13) with l	 � � exp�AT�=Q�n; c�. Note that function
Q�n� has the following limiting forms: Q ’ �n for n
 c,
Q ’ 2

������
nc

p
for c
 n
 cN2, and Q � �n=N for n�

cN2. This entails that our choice of l	 is exact at small
and large n, and is adequate everywhere in between; see
Eqs. (2), (7), and (10).

All that remains is to handle the rs * 2 regime where the
crossover between the CTG and the Wigner crystal occurs.
Our solution is to treat ( in Eq. (9) as a variational
parameter. This ensures a smooth transition from the
CTG (( � 1) to the Wigner crystal ((� 1), provides a
strict upper bound on "�n�, and can be done semianalyti-
cally. Indeed, the energy density of the state ��(� is the
sum of the kinetic "varkin and the potential "varint terms. By
virtue of a formula similar to Eq. (3), "varkin can be computed
differentiating the known energy density "CS�(� in the
Calogero-Sutherland model [18] with respect to its cou-
pling constant c � (�(� 1�,

"varkin �

�
1� c

@
@c

�
"CS �

�2

6

�h2n3

m
(3

2(� 1
: (17)

To get "varint , we calculate it at ( � 1
2 ; 1; 2, and 1 using the

exact cluster functions h�x� [19] and interpolate between
the obtained four values by a cubic polynomial in (�1,
5-3
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"varint � �e2=��n2�ln�Rn��AW �a1(
�1�a2(

�2�a3(
�3�.

For example, in the L ! 1 limit we find a1 � �0:3173,
a2 � �0:02363, and a3 � 0:003 048. The smallness of a2
and a3 implies a high numerical accuracy of this polyno-
mial fit. Minimizing "varkin � "varint with respect to ( (numeri-
cally), we get "�n�. The quality of our variational method
can be judged by how well it compares with Eq. (16) in the
rs � 1 limit. It is easy to see that the functional form of
"�n� is reproduced correctly, but the coefficient in front of
the phonon term is approximately 1:022, i.e., higher than
Cph by a mere 0.4%. The results of this procedure, imple-
mented for several values of aB=R, are plotted in Figs. 1(b)
and 1(c) The curves produced by the Bethe ansatz and the
variational method match virtually seamlessly. Thus, the
proposed scheme gives a theoretically well-founded and
numerically accurate DFT needed in applications, some of
which are discussed next.

Implications.—The main physical omission of our theo-
retical model is the screening of Coulomb interactions by
other 1D subbands that may be present in a wire. Such a
screening is averted if � exceeds a certain threshold �th.
For CN, we estimate �th 
 NL, e.g., �th 
 12 for N � 4
and L � 3. Note that � is equal to the dielectric constant
�0 of the medium if the nanotube is immersed in it and is
equal to ��0 � 1�=2 if the medium is used as a substrate. If
� < �th, our theory can still apply at sufficiently low n,
e.g., in the Wigner crystal regime.

One possible application of our results for "�n� is a fine-
tuning of the operational parameters of carbon nanoelec-
tronic devices [4,5]. On a crude level, such devices are tiny
capacitors made of CN and control metallic gates. Precise
knowledge of their capacitance per unit length C is desir-
able for their optimal design and efficiency. The quantum
and many-body effects influence the measured value of C
according to the equation (see, e.g., Ref. [20])

C�1 � C�1
0 � ��=e2�0�1; 0�1 � @2"=@n2; (18)

where C�1
0 
 �2=�� ln�2D=R� is the inverse classical (geo-

metric) capacitance and 0�1 is the inverse thermodynamic
density of states (ITDOS). The quantum correction due to
the ITDOS may be non-negligible if the distance D be-
tween the CN and the gate is small or if n is low, so that
D
 a. The measurable signature of a finite 0�1 would be
the n dependence of C. Recently, the capacitance of CN
and their junctions was studied in Ref. [20] by a 3D DFT. It
would be interesting to apply our theory to the same
structures for comparison.

The sign of the ITDOS is determined by the convexity of
the "�n� curve. From Fig. 1 we see that at low enough
electron densities ITDOS becomes negative. This phe-
nomenon is a generic feature of a strongly correlated
electron matter [21]. Unlike the case of neutral systems,
here the negative ITDOS does not imply any thermody-
namic instability but leads instead to a small overscreening
of an external electric charge. One possible technique to
detect such an overscreening experimentally is the scanned
05640
probe imaging of the electrostatic potential along an ultra-
thin wire (e.g., the CN [22]) set on a dielectric substrate.
Above the puddles of the electron liquid induced by stray
random charges, one would see the potential of a ‘‘wrong’’
curvature: higher near the center of the puddle, lower near
its ends. The puddles can be intentionally created by addi-
tional small gates.

Finally, from "�n� one can extract the n dependence of
the LL parameters that influence charge tunneling and low-
temperature transport in 1D wires. Preliminary results and
their comparison with other work in the literature [23] have
been reported in Ref. [8]. A more detailed investigation
that incorporates the results derived in this Letter will be
presented elsewhere [16].
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