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Scaling Behavior of the Portevin–Le Chatelier Effect in an Al-2:5%Mg Alloy
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The scaling behavior of the Portevin–Le Chatelier (PLC) effect was studied by deforming an
Al-2:5%Mg alloy for a wide range of strain rates. To reveal the exact scaling nature, the time series
data of true stress versus time, obtained during deformation, were analyzed by two complementary
methods: the finite variance scaling method and the diffusion entropy analysis. From these analyses we
could establish that, in the entire span of strain rates, the PLC effect showed the Levy-walk property.
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The study of the response of metals to applied force is
primarily a subject of mechanical metallurgy, but the plas-
tic instabilities observed in the stress-strain characteristics
of metals have attracted the attention of many people from
various scientific disciplines. In recent years, plastic insta-
bilities have been a subject of intensive investigations in
the context of self-organization in nonlinear systems far
from equilibrium. Among these instabilities, the Portevin–
Le Chatelier (PLC) effect or jerky flow in dilute alloys
has been studied most extensively [1–3]. Typical of this
effect is the complex behavior of discontinuous yielding
or jerky flow in time and different types of strain local-
izations in space. The effect has continuously drawn atten-
tion due to its intriguing spatio-temporal dynamics. In this
respect, the PLC effect falls into the class of complex
nonlinear driven systems exhibiting intermittent relaxa-
tion sequences, of which there are many examples [4,5].
In uniaxial loading with a constant imposed strain rate, the
effect manifests itself as serrations in the stress versus time
(or strain) curves, associated with localized bands, static or
propagating, of plastic deformation. The phenomenon is
observed in many dilute alloys within a definite range of
strain rates and temperatures. The physical origin of the
PLC effect is known to arise from a microstuctural pro-
cess denoted by dynamic strain aging (DSA), that is, the
dynamic interaction between mobile dislocations and
mobile solute atoms [6–10]. Mobile dislocations, which
are carriers of plastic strain, move jerkily between the
obstacles provided by other dislocations. Solute atoms
diffuse in the stress field generated by mobile dislocations
and further pin them while they are arrested at obstacles.
This dynamic strain aging leads to a negative strain rate
sensitivity of the flow stress within a certain range of
applied strain rates and temperatures when mobile dis-
locations and solute atoms have comparable mobility
[8,9,11,12]. Bands of localized deformation are then
formed, in association with stress serrations. Close inves-
tigations of the PLC effect revealed the occurrence of
different types of stress serrations. These serrations are
well characterized in polycrystals, where they exhibit
three main types of behavior: static, hopping, and propa-
gating, which are traditionally labeled as type C, B, and A,
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respectively [13–16]. Type C bands appear almost at
random in the sample without propagating, type B bands
exhibit an oscillatory or intermittent propagation, and
type A bands finally propagate continuously. Recent
analysis [17,18] suggests that distinct dynamic features
could be associated with each of these band types. At
low strain rates static (type C) bands are associated with
weak spatial interactions, consistent with randomness in
their spatial distribution. In contrast, at high strain rates,
strong spatial correlations are associated with type A
propagating bands, leading to the self-organized critical
(SOC) regime. At medium strain rates, partially relaxed
spatial interactions lead to marginal spatial coupling linked
to type B hopping bands. In this case, a chaotic regime was
demonstrated.

Because of a continuous effort of numerous researchers,
there is now a reasonable understanding of the mecha-
nisms and manifestations of the PLC effect. A review of
this field can be found in [1,2]. The possibility of chaos
in the stress drops of the PLC effect was first predicted by
G. Ananthakrishna et al. [19] and latter by V. Jeanclaude
et al. [20]. This prediction generated a new enthusiasm in
this field. In last few years, many statistical and dynami-
cal studies have been carried out on the PLC effect.
M. Lebyodkin et al. have studied the spatiotemporal dy-
namics of the PLC effect in detail [21,22]. In one of their
works they have also proposed the PLC effect to be a can-
didate for modeling of earthquake statistics [23]. Other
researchers like M. S. Bharathi et al. [18] and S. Kok
et al. [24] have studied the dynamical and chaotic behavior
of the PLC effect.

Despite many dynamical studies, the PLC effect remains
an active area of research, with many important questions
still open. This Letter focuses on an alternate approach to
establish the connection between the dislocation interac-
tions and the stress fluctuations of the PLC effect. A link
between these two phenomena is detected through a de-
tailed scaling analysis of the time series data of the stress
fluctuations during the PLC effect in the different ranges of
plastic instabilities in an Al-2:5%Mg alloy. Scale invari-
ance has been found to hold empirically for a number of
complex systems [25], and the correct evaluation of the
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scaling exponents is of fundamental importance in assess-
ing if universality classes exist [26].

Al-Mg alloys containing a nominal percentage of Mg
are found to exhibit the PLC effect at room temperature for
a wide range of strain rates [14]. Tensile testing was con-
ducted on flat specimens prepared from polycrystalline
Al-2:5%Mg alloy. Specimens with gauge length, width,
and thickness of 25, 5, and 2.3 mm, respectively, were
tested in a servo controlled INSTRON (model 4482) ma-
chine. All the tests were carried out at room temperature
(300 K) and consequently there was only one control pa-
rameter: the applied strain rate. To monitor closely its in-
fluence on the dynamics of jerky flow, strain rate was
varied from 7:56�10�6 sec�1 to 1:9�10�3 sec�1. The
PLC effect was observed throughout the range. The stress-
time response was recorded electronically at periodic time
intervals. Figure 1 shows the observed PLC effect in a typi-
cal stress-strain curve for strain rate 3:8� 10�4 sec�1. The
inset shows the magnified view of stress-time variation of a
typical region in it. In the varied strain rate we could
observe type A, B, and C bands as reported [14,24].

To study the scaling behavior of the PLC effect we make
use of two complementary scaling analysis methods: the
finite variance scaling method (FVSM) and the diffusion
entropy analysis (DEA) [27–31]. The need for using these
two methods to analyze the scaling properties of a time
series is to discriminate the stochastic nature of the data:
Gaussian or Levy [29]. Recently, Scafetta et al. [32] had
shown that to distinguish between fractal Gaussian inter-
mittent noise and Levy-walk intermittent noise, the scaling
results obtained using DEA should be compared with that
obtained from FVSM.

These methods are based on the prescription that num-
bers in a time series f�ig are the fluctuations of a diffusion
trajectory; see Refs. [28,33,34] for details. Therefore, we
shift our attention from the time series f�ig to probability
FIG. 1. True stress versus true strain curve of an Al-2:5%Mg
alloy at a strain rate of 3:8� 10�4 sec�1. The inset shows a
typical region of the curve in the stress-time plot.
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density function (PDF) p�x; t� of the corresponding diffu-
sion process. Here x denotes the variable collecting the
fluctuations and is referred to as the diffusion variable. The
scaling property of p�x; t� takes the form

p�x; t� �
1

t	
F
�
x

t	

�
: (1)

In the FVSM one examines the scaling properties of the
second moment of the diffusion process generated by a
time series. One version of FVSM is the standard deviation
analysis (SDA) [28], which is based on the evaluation of
the standard deviation D�t� of the variable x, and yields
[25,28]

D�t� �
������������������������������
hx2; ti � hx; ti2

q
/ tH: (2)

The exponent H is interpreted as the scaling exponent and
is usually called the Hurst exponent. It is evaluated from
the gradient of the fitted straight line in the log-log plot of
D�t� against t.

DEA introduced recently by Scafetta et al. [27] focuses
on the scaling exponent 	 evaluated through the Shannon
entropy S�t� of the diffusion generated by the fluctuations
f�ig of the time series using the PDF (1) [27,28]. Here, the
PDF of the diffusion process, p�x; t�, is evaluated by means
of the subtrajectories xn�t� �

Pt
i�0 �i�n with n � 0; 1; . . . .

Using Eq. (1) we arrive at the expression for S�t� as

S�t� � �A� 	 ln�t�; �A � Const� (3)

Equation (3) indicates that in the case of a diffusion process
with a scaling PDF, its entropy S�t� increases linearly with
ln�t�. The scaling exponent 	 is evaluated from the gradient
of the fitted straight line in the linear-log plot of S�t�
against t.

Finally we compare H and 	. For fractional Brownian
motion the scaling exponent 	 coincides with the Hurst
FIG. 2. SDA of the stress versus time data obtained from an
Al-2:5%Mg alloy during tensile deformation at a strain rate of
3:8� 10�4 sec�1.
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FIG. 3. DEA of the stress versus time data obtained from an
Al-2:5%Mg alloy during tensile deformation at a strain rate of
3:8� 10�4 sec�1.
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exponent [28]. For random noise with finite variance, the
diffusion distribution p�x; t� will converge to a Gaussian
distribution with H � 	 � 0:5. If H � 	 the scaling rep-
resents anomalous behavior. An interesting example of the
anomalous diffusion is the case of Levy-walk, which is
obtained by generalizing the central limit theorem [35]. In
this particular kind of diffusion process the second moment
is finite but the scaling exponents H and 	 are found to
obey the relation

	 �
1

3� 2H
(4)

[28,34], instead of being equal.
Recently DEA and SDA have been applied to various

social, meteorological, economical, and biological time
TABLE I. SDA and DEA scaling exponents ob
Al-2:5%Mg alloy during tensile deformation for

SDA
exponent

(H)
Strain rate (maximum

(sec�1) error � �0:02) er

7:56� 10�6 0.98
1:99� 10�5 0.98
3:98� 10�5 0.97
7:99� 10�5 0.96
1:55� 10�4 0.96
3:85� 10�4 0.96
5:88� 10�4 0.96
7:42� 10�4 0.96
1:21� 10�3 0.95
1:59� 10�3 0.94
1:92� 10�3 0.94
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series data [32–34,36,37] to reveal the exact scaling na-
ture. Here we take the initiative to apply these two methods
for the time series data of the stress drop of the PLC effect
in an Al-2:5%Mg alloy to find the exact scaling. Figures 2
and 3 show the plot of D�t� and S�t� against t respec-
tively calculated from stress versus time data taken at
3:8� 10�4 sec�1 strain rate. These plots are fitted with
Eqs. (2) and (3) respectively yielding the scaling exponents
H � 0:96 and 	 � 0:91.

The scaling exponents H and 	 obtained from the time
series data for different strain rates are listed in Table I. The
high values of the scaling exponents imply a strong persis-
tence in the stress fluctuations. The values of H and 	
decrease marginally due to increase in strain rate. High
strain rate demands higher average dislocation velocity and
lesser waiting time, causing a decrease in the additional
activation enthalpy �G due to solute concentration accu-
mulated at the glide dislocation segments. This enhances
the probability of the thermally activated dislocation glide,
resulting more load drops in unit time. This causes H and 	
to decrease with an increase in strain rate. Finally, we note
that the standard deviation scaling exponents (H) are larger
than the corresponding diffusion entropy scaling exponents
(	) and are seen to fulfill the Levy-walk diffusion relation
[Eq. (4)] within the accuracy of our statistical analysis as
shown in the fourth column of Table I.

It is evident from different studies [3,38] that the physics
governing the PLC effect necessarily localizes the defor-
mation in the form of bands at all plastic strain levels after
the critical strain at which the PLC effect initiates. Metals
deform through the generation and propagation of disloca-
tions in the submicron scale. The key to the PLC effect lies
ultimately bundled in the dynamics that connect the micro-
scopic world of dislocations to the macroscopic regime of
the bands. Deformation bands travel with constant velocity
at constant stress [39]. If the pulling speed is increased, the
tained from the stress versus time data of an
different strain rates.

DEA
exponent

(	)
(maximum
ror � �0:02) �	� 1

3�2H�=	� � 100

0.94 2.29
0.93 3.39
0.92 2.54
0.92 0.64
0.92 0.64
0.91 1.75
0.91 1.75
0.91 1.75
0.90 1.01
0.89 0.32
0.88 1.46
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band velocity changes proportionally. Initial motion of the
band is accompanied by a sudden drop in stress. For low
strain rate, this drop is sufficient to stop the band. At high
strain rates, the stress drops are relatively small in magni-
tude and no longer stop the band completely and it travels
from hopping to constant velocity with the increase in the
strain rate. Depending on temperature and strain rate con-
ditions, these bands may or may not be correlated in space.
This correlation arises due to the long range elastic inter-
actions. In the earlier works [17,18] it was shown that the
dynamics of the PLC bands at low and medium strain rates
are chaotic while at high strain rate it showed SOC. But our
results from DEA and SDA (Table I) clearly suggest that
the scaling behavior of the overall dynamics of the PLC
effect at all strain rates follow Levy-walk property. The
strongly correlated glide of macroscopic dislocation
groups in the band, the long range elastic interactions
among the dislocations, and the DSA are the basic ingre-
dients for the dynamics of the PLC bands. The variations of
the degree of these three attributes manifest different ob-
servable macroscopic dynamic characteristics of the bands.
Identicality of the basic dynamical features responsible for
the PLC bands made them to scale uniformly.

In conclusion, we have studied the PLC effect from a
new perspective and evaluated the exact scaling behavior
of the PLC effect in an Al-2:5%Mg alloy using two com-
plementary scaling analysis methods: DEA and SDA. The
analyses were performed in a wide range of strain rates
where different types of deformation bands are observed.
The relation of the two scaling exponents in each strain rate
obtained through our analysis clearly suggests that the
stress fluctuations occurring due to dislocation flow (PLC
effect) in an Al-2:5%Mg alloy inherit a Levy-walk memory
component and the scaling behavior is independent of
strain rate.
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