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Structure-Based Interpretation of the Strouhal-Reynolds Number Relationship
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The wake in the flow past a circular cylinder has posed a long-standing challenge to scientists since the
late 19th century. Many aspects of this seemingly simple phenomenon remain unexplained. Of particular
interest is the relationship between the dimensionless vortex shedding frequency (the Strouhal number St)
and the ratio of inertial to viscous forces in the fluid (the Reynolds number Re). We propose a new St-Re
relation based on the observations of the structure of a vortex street in flowing soap films. The
measurements suggest a simple two-parameter form St � 1=�A� B=Re� that describes laminar vortex
shedding remarkably well for bulk fluids as well as for two-dimensional flowing soap films.
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Vortex shedding from a bluff body is a common phe-
nomenon and has been studied since Strouhal’s pioneering
work [1]. However, not all aspects of vortex shedding are
well understood. One of the long-standing problems is the
precise relationship between the shedding frequency f and
a linear dimension of the bluff body, say, the diameter D of
a circular cylinder, and the mean velocity U [2]. Motivated
by the idea of hydrodynamic similarity, Rayleigh proposed
that if one defines a dimensionless frequency St�� fD=U�,
termed the Strouhal number, St is related to the Reynolds
number Re�� UD=�� as

S t � a
�
1�

b
Re

�
; (1)

where � is the kinematic viscosity of the fluid and a and b
are constants [3]. Although measurements have largely
supported Rayleigh’s proposition with small modifications
to the coefficients a and b [4], systematic deviations to
Eq. (1) were noticeable near the onset of vortex shedding
[5]. These deviations have motivated current research with
the aim of finding a better description of the St-Re relation
[6,7]. Various new scaling relations were proposed, some
adding correction terms to Eq. (1) and others conjecturing
entirely different forms [5]. Among various proposals, the
most prominent one is the relation given by Fey et al. [6]
and Williamson and Brown [7]:

S t � a0 �
b0

Re1=2
: (2)

The primary justifications for Eq. (2) are that it fits experi-
mental data well and it may be derivable from a boundary
layer theory [7].

Herein we report new investigations of the St-Re relation
in the flowing soap film channel with the focus on the
structure of the vortex street. An important feature of
flowing soap film is its small thickness, ensuring that the
velocity is confined to the film plane and thus two dimen-
sional (2D). This property eliminates a variety of instabil-
ities that occur in bulk fluids, complicating the interpre-
tation of data. We note that in three-dimensional (3D)
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fluids, Eq. (1) is only piecewise applicable in different
Re regimes and works the best in the laminar shedding
regime (50< Re< 180) [5]. In contrast, vortex streets in
the soap film are stable for Re up to several thousand,
allowing St-Re relation to be tested over a much broader
range of Re. By definition, the shedding frequency down-
stream is given by f � vst=�, where vst and � are the street
velocity and the spatial periodicity in the laboratory frame,
and both are functions of U and D. In this experiment, vst

and � were measured as a function of D while keeping U
fixed. We found that for a wide range of D (and conse-
quently Re) the street velocity vst normalized by U is
constant c��vst=U��0:75 for 70< Re< 3000. We also
found that � depends linearly on D (or Re), � � �0 � �D.
These relations are surprisingly simple considering the
complexity of the phenomenon. Imposing the hydrody-
namic similarity hypothesis, it follows that

S t �
1

A� B=Re
; (3)

where A � �=c and B � �0U=�c��. This equation not
only describes our own data very well for more than two
decades in Re but also fits well-known modern 3D mea-
surements published in literature [5,8]. A small correction
arises near the onset of vortex shedding, but it is hardly
detectable unless the data are of exceptional quality.

The measurements were carried out in a flowing soap
film channel 10 cm wide and 3 m long. The flow in the film
is laminar and can last indefinitely because of a built-in
recirculation system (see Ref. [9] for details). To generate
vortex streets, tapered glass rods were used, which allowed
Re to be varied continuously without changing U. By
fixing U�� 120 cm=s�, both the film thickness h and its
viscosity � were held constant during measurements.
Based on a previous experiment of comparable conditions,
it is determined that h 	 3 �m and � 	 2
 10�2 cm2=s
[9]. By pulling the rod slowly out of the film, D continu-
ously decreased, permitting the determination of the onset
of vortex shedding. We found that the onset of the vortex
4-1  2005 The American Physical Society
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shedding ReC � 11� 2 was consistently lower than the
3D value of ReC � 47 with a negligible hysteresis [10].

Using a fast video camera, vortex shedding frequency f
was measured directly by counting the number of vortices
peeled off from the rod. The measured St versus Re is
plotted in Fig. 1. We note that the asymptotic Strouhal
number (Re ! 1) St1 � 0:195 is �10% lower than the
typical 3D measurements [5] or 2D measurements in films
[11]. Nevertheless, this difference does not alter our con-
clusion that Eq. (3) is an accurate representation of vortex
shedding from circular cylinders. Since St is also given by
�vst=U��D=��, a careful study of the dependence of vst and
� on Re can yield useful information about the St-Re
relation. Our imaging technique allows us to locate the
centers of the vortices and to measure the distances be-
tween pairs of vortices on each side of the rod, which we
called ��x�. The street velocity v�x� was also measured at
different downstream locations x. As shown in Fig. 2(a),
both ��x� and v�x� were found to increase with x and
eventually reach the steady-state values �1 and v1.
These measurements showed that the spatial dependence
of ��x� and v�x� is nearly identical, suggesting that vortex
shedding frequency f � v�x�=��x� � v1=�1 is indepen-
dent of x. This property supports the view that the Karman
vortex street is a single global mode characterized by the
frequency f. Since we are only interested in the steady
state, in what follows �1 and v1 will be replaced by � and
vst for simplicity of notation.

In Fig. 2(b) the steady-state values of � and vst are
plotted against Re. We found that to a good approximation
� is a linear function of D (or Re) and can be parametrized
as � � �0 � �D, where �0 � 0:35� 0:08 mm and � �
4:1� 0:3. Since �0 > 0, the wake periodicity does not
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FIG. 1 (color online). The measured St versus Re relation. The
main curve represents measurements carried out in the vertical
film, while the data in the inset are for an inclined film. The solid
lines are fits by using St � 1=�A� B=Re�. This new relation out
performs Eq. (1) St � 0:18�1� 28=Re� (dash-dotted line) and
Eq. (2) St � 0:21� 0:825=Re1=2 (dashed line). The difference
becomes more significant near ReC as delineated in the inset.
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vanish in the limit Re ! ReC and �0 represents the small-
est unstable wavelength in the system. By introducing the
dimensionless wavelength �D � �U=�, this relation can
be rewritten as �D � 210� 4:1Re, which is presented in
the inset of the figure. The normalized street velocity vst=U
exhibits a more complex Re dependence; it is unity for
Re ! ReC, indicating that near ReC the wake travels at the
same velocity as the mean velocity U. As Re increases,
vst=U decreases rapidly and saturates at c 	 0:75. This
value is about 13% lower than c observed in 3D flows [12],
indicating that more vorticity is encapsulated into the
vortex in flowing soap films. The nontrivial Re dependence
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FIG. 2 (color online). (a) The wavelength ��x� and the wake
velocity v�x� of a Karman vortex street versus downstream
distance x. The measurements were carried out using a rod of
diameter D � 0:056 cm and U � 70 cm=s. Both the wake ve-
locity v�x� (squares) and the wavelength ��x� (circles) reach
their saturation values �1 � 0:225 cm and v1 � 53 cm=s rap-
idly, within �7D downstream. (b) The steady-state wavelength
� and street velocity vst versus Re. Using different D’s, depen-
dence of � � �1 and vst � v1 on Re was measured. It can be
seen, while � is approximately linear in Re, the street velocity
(squares) is strongly nonlinear near ReC. This cusp can be
modeled approximately by a function that has a Re1=2 depen-
dence, as delineated by the solid line. The dimensionless wave-
length �U=� (circles) is also shown in the inset.
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near ReC is expected if the onset is a Hopf bifurcation,
since in this case the transverse component of the velocity
vanishes continuously as �Re� ReC�

1=2 [13]. In our ex-
periment, the behavior of vst near ReC can be adequately
described as vst=U � c� �1� c�f�Re�, where f�Re� has
the property that it is unity when Re � ReC and it vanishes
for Re � ReC. Our measurements support a power-law
dependence f�Re� � �ReC=Re�0:5�0:3 as delineated by the
solid line in the inset of Fig. 2(b). This power-law term
improves the quality of the fit but not to the extent that it
could not be neglected.

The measured Re dependences for vst and � provide an
alternative means for obtaining the St-Re relation:

S t �
�
vst

U

��
D
�

�
� �c� �1� c�f�Re��

�
D

�0 � �D

�
; (4)

and its agreement with the direct frequency measurement
is reassuring. What is surprising, however, is that even if
the ‘‘critical’’ anomaly f�Re� is neglected, the simplified
relation St � 1=�A� B=Re� still works remarkably well
for our system. Such a good agreement arises because the
critical regime is narrow and the data are not noise free,
allowing the two-parameter equation to be extrapolated
into the critical regime. The solid lines in Fig. 1 illustrate
the quality of fit over two decades in Re using Eq. (3). As
can be seen, it describes the data much better than the
classical relation Eq. (1) and is considerably better than
Eq. (2). The difference is striking for the low-Re regime as
presented in the inset. Further comparison is presented in
Table I.

We next turned our attention to the implication of our
new St-Re relation on previous measurements, particularly
those in 3D fluids. Modern measurements in the laminar
shedding regime (47< Re< 180) typically have errors of
a few percent and the discrepancy between different
measurements is also of the same magnitude [5]. The
only complication is that in 3D fluids the measured St-Re
relation is piecewise continuous; vortex shedding
is laminar only for the above indicated range of Re. Our
discussion will be focused in this regime. We note that
for this narrow range of Re the fits using our scheme and
that of Eq. (2) are not significantly different. The quality of
the fits can be best demonstrated by plotting the residuals
between the data and the fit, which are delineated by
differently colored lines as shown in Fig. 3. The quality
of the fit can also be judged by the �2 (see Table I). We
note that in all cases Eq. (1) is the least accurate presenta-
TABLE I. Fit

Experiments A B

2D Flowing films (this work) 5.12 313
2D Henderson [14] 4.03 202
3D Williamson [5] 4.18 193
3D Norberg [8] 4.15 197
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tion of the measurements. On the other hand, both Eqs. (2)
and (3) yield comparable fits with the difference �2 �
10�6 that may not be significant. Recall that Eq. (3), con-
taining two parameters, is only an approximation with the
critical anomaly being ignored. Including such an anomaly
could improve the quality of fit near ReC, but such an
inclusion may not be meaningful considering noises in
the data.

As most hydrodynamic problems, it is of interest to
explore the asymptotic behavior of the system. We note
that for large Re, the denominator in St can be expanded in
terms of 1=Re as Rayleigh suggested [3]. In increasing
orders of 1=Re, one finds from Eq. (4)

St �
1

�

�
c� �1� c�

�
ReC
Re

�
1=2

�

�
c
A

��
B
Re

�

�

�
1� c
A

��
B
Re

��
ReC
Re

�
1=2

� � � �

�
: (5)

This equation also contains the 1=Re1=2 term proposed by
Fey et al. [6] and Williamson and Brown [7]. However, for
practical considerations, it can be shown that the leading
term is 1=Re instead of 1=Re1=2. Comparing the second
and third terms in Eq. (5), it is evident that for the 1=Re1=2

term to be dominant Re> �c=�1� c��2�B=A�2=ReC or
Re> 3000 for 2D films. Thus, for our experiment the
contribution of the second term is negligible, validating
our early observation that the critical anomaly f�Re� can be
neglected. One can draw the same conclusion for laminar
shedding in bulk fluids.

To summarize, we have found a new St-Re relation,
which is firmly based on the observations of the structure
of a vortex street and its motion over a broad range of Re.
Although the behavior of vortex streets in the soap films
and those in incompressible 3D fluids are somewhat differ-
ent, possibly due to the film being slightly compressible,
our measurements suggest a simple two-parameter form
St � 1=�A� B=Re� that describes remarkably well our
data as well as the 3D data for circular cylinders. Since
this relation is based on simple observations that are ex-
pected to be general, we postulate that Eq. (3) may be
applicable to other slender bodies. Finally, we point out
that the new relationship St�1=�A�B=Re� appears simi-
lar to the classical relation St � a�1� b=Re� proposed by
Rayleigh. In his original proposition, the 1=Re dependence
is simply the leading term of an infinite expansion in terms
of the control parameter Re. Indeed, for large Re the
two relations are identical with the result a � 1=A and
ting results.

�2 of Eq. (1) �2 of Eq. (2) �2 of Eq. (3)
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FIG. 3 (color online). The fits to 3D experimental data and 2D numerical simulations. (a),(b) 3D measurements were carried out by
Williamson [5] and Norberg [8], respectively. (c) In Henderson’s numerical simulations, since secondary 3D instabilities are absent,
data are continuous up to Re� 1000 [14]. The solid lines in all three plots present fittings by using Eq. (3). Insets are plots of residuals
between the fit and the data, using Eq. (1) (circles), Eq. (2) (triangles), and Eq. (3) (squares).
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b � B=A. However, the expansion is not valid near the
onset of shedding. It did not escape our attention that if we
rewrite our relation in the form St � St1=�1� Re0=Re�,
Re0 � B=A � 47:2� 0:8 turns out to be surprisingly close
to the critical Reynolds number ReC � 47� 3 measured in
3D fluids. Here A and B are taken from the fits to the data of
Williamson and Norberg. Thus, the new St-Re relation
implies the existence of a special Reynolds number Re0,
which in 3D fluids can be identified as ReC. It comes as
no surprise therefore that for 3D fluids, the 1=Re expan-
sion of Eq. (3) converges poorly near ReC, explaining per-
sistent deviations from Eq. (1) when compared with mod-
ern measurements and numerical simulations (see Table I).
For 2D flows in soap films, such an expansion is not
possible for Re< Re0, since Re0 > ReC.
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