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Four Sided Domains in Hierarchical Space Dividing Patterns
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The cracks observed in the glaze of ceramics form networks, which divide the 2D plane into domains. It
is shown that, on the average, the number of sides of these domains is four. This contrasts with the usual
2D space divisions observed in Voronoi tessellation or 2D soap froths. In the latter networks, the number
of sides of a domain coincides with the number of its neighbors, which, according to Euler’s theorem, has
to be six on average. The four sided property observed in cracks is the result of a formation process which
can be understood as the successive divisions of domains with no later reorganization. It is generic for all
networks having such hierarchical construction rules. We introduce a ‘‘geometrical charge,’’ analogous to
Euler’s topological charge, as the difference from four of the number of sides of a domain. It is preserved
during the pattern formation of the crack pattern.
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FIG. 1. A hierarchical crack pattern in the glaze of a ceramic
plate. The first crack to have formed can be seen as a long
sinuous line along the lower part of the photograph.
In a two-dimensional space-dividing network, a set of
lines forms a reticulum dividing a surface into adjacent
domains. Very different mathematical, physical, biologi-
cal, or social processes give rise to such networks.
Examples include the Voronoi tessellation of randomly
distributed points, the two-dimensional soap froths con-
fined between glass plates, the reticulum formed by cracks
in thin layers, the cellular structure of 2D living tissue, the
leaf venation, or the division of geographical surface by
roads, streets, or field borders. Depending on the specific
example, elementary domains correspond to areoles,
blocks, or fields, while line segments which delimit them
can be walls, cracks, veins, streets, or hedges. The points
where these lines meet are called vertices and generically, a
vertex is the meeting point of three lines. These networks
have a well known common property expressed by Euler’s
theorem which states that in the plane each domain has, on
average, six neighbors (hni � 6). For many cellular net-
works, it follows that the average number of sides per cell,
hsi, is also six. This property is crucial for the understand-
ing of two-dimensional soap froth which is a model system
for this kind of pattern [1,2].

The present Letter aims at demonstrating the existence
of a subset of these networks that we will call hierarchical
reticula, where geometry imposes that the domains are, on
average, four sided. While compatible with Euler’s theo-
rem, the average of four sides is the signature of this
hierarchy. It is the consequence of a formation process
that can be described as the successive divisions of do-
mains and the absence of any further reorganization.

Let us first consider the crack reticulum formed during
cooling in the superficial glaze of ceramic plates as shown
in Fig. 1. This cracking pattern is due to differential
shrinkage; similar patterns are also observed in thin layers
of desiccating mud or gel [3,4]. In these systems, either
cooling or desiccation induces a shrinkage of a thin mate-
rial layer, which is frustrated by adhesion to a rigid sub-
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strate. The resulting mechanical stresses are partly released
by the fractures. It has been shown that the characteristic
distance between the fractures scales linearly with the layer
thickness. The studies in colloidal material have further-
more revealed the existence of two distinct cracking re-
gimes. In the case of very thin layers or inhomogeneous
materials, the fractures are almost simultaneously nu-
cleated in starlike triplets and show a very rough appear-
ance. The angles at the nucleation points are mostly 120 �.
Numerical models [5,6] have been employed to discuss the
scaling behavior of this regime. This approach is particu-
larly pertinent when compared with experiments in granu-
lar materials [7].

The cracking regime we are interested in is observed for
thicker layers, or in brittle, homogeneous materials such as
glaze. Here, the nucleation of cracks is scarce and the
fractures are formed successively. In general, no more
than one crack is propagating at a given time. When the
extremity of a propagating fracture comes in the vicinity of
an older, already formed one, it will propagate to join the
older one by a right angle (principle of local symmetry)
[3,4]. The new crack, clearly, does not affect the position of
3-1  2005 The American Physical Society



PRL 94, 054503 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 FEBRUARY 2005
the older ones. We thus understand the crack pattern ge-
ometry as the result of successive domain divisions without
reorganization. A fracture divides the domain in which it is
formed into two. As the domains decrease in size, the
fractures decrease in length. The frozen hierarchy of cracks
of different lengths is thus the signature of their successive
formation. In the case of colloidal materials, the crack
opening increases in time and the crack succession is
also manifest in the crack width [8,9].

The way a domain is divided by a new crack will depend
on the mechanical stress field and thus on the domain
shape, which defines the boundary conditions (see also
the phenomenological modeling in [10]).

The pattern in Fig. 1 is composed of triangles, quad-
rangles, or pentagons. In order to put this observation
on a quantitative basis we counted the number of sides of
N � 1000 domains on such plates (histogram in Fig. 2).
The average number of sides is very close to four. This
result is in sharp contrast to what is found for cellular
patterns such as soap froths (Fig. 3) where the average
number of sides is six.

The different average number of sides can be understood
by considering the two details of Fig. 3. We see that it is
necessary to make a clear distinction between topology and
geometry. Edges and vertices belong to the topological
description of the space-dividing network. In the 2D
foam, an edge is a soap film separating two bubbles and
a vertex is the point where three films meet. In a hierarch-
ical crack pattern, a vertex is the point where a younger
crack joins an older crack and an edge is the part of the
fracture between two of these points. An edge separates
two adjacent domains. The number of edges delimiting a
cell is thus equal to the number of its first neighbors.

By contrast, we have to consider ‘‘sides’’ and ‘‘wedges’’
(or ‘‘corners’’) if we wish to describe the shape of a cell. A
side of a domain is the part of the contour delimited by two
wedge-shaped singularities, the corners of the cell. A side
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FIG. 2. Histograms for N � 1000 domains in ceramic plates of
the number of sides (filled bars) and of the number of neighbors
(empty bars). The average number of sides is hsi � 4:007; the
average number of neighbors is hni � 5:98.
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can be curved but its curvature is continuous. It is clear that
in 2D the number of corners of a cell is equal to the number
of sides, while the number of vertices on the cell contour is
equal to the number of delimiting edges. However, the
relation between edges and sides depends on whether the
network is hierarchical or not. Let us now revisit the well-
studied case of the foam. Here, the angles between two
edges is 120 � (Plateau’s law), each vertex corresponds
thus to a corner. In this case, the number of sides is equal
to the number of the delimiting edges and thus neighbors.
The marked foam cell in Fig. 3(a) has six sides and six
neighbors.

Considering the foam pattern as an embedded graph,
Euler’s theorem on topology can be applied. This theorem
states that for a connected graph, the total number of
vertices V, edges E, and separated cells N are related by

N � E� V � O�1�: (1)

The constant term of the order of one, O�1�, depends on the
topology of the embedding space and on the boundary
conditions. It has been shown that in a 2D soap foam,
only threefold vertices are stable. The total numbers of
edges and vertices are therefore related by 3V � 2E. As
stated above, each edge presents a side for each adjoining
cell. The total number of sides S is thus S � 2E.
Consequently, the average number of sides hsi is

hsi � S=N � 6	1� O�1�=N
: (2)

In the case of an extended pattern with a large number of
cells N, the average number of sides (and the average
number of neighbors) is thus equal to six. Let us further-
more note that it has been found useful to introduce the
notion of a topological charge of a cell by

qtopo � 6� n; (3)

where n is the number of neighbors of that cell. Local
topological transformation observed in a soap froth are
the neighbor switching (T1) and the vanishing of a cell
(T2). Both conserve the total topological charge of the
(a) (b)
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FIG. 3. (a) A detail of a dry, two-dimensional foam. The cell
marked by the disk has six sides and six neighbors. (b) A detail
of a hierarchical crack pattern. The marked cell has fours sides,
but six neighbors.
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involved cells so that the use of the term charge is justified
(see also [11]).

In the case of a domain bounded by cracks [Fig. 3(b)],
the number of sides is not equal to the number of neigh-
bors. When a crack joins the contour from the outside, it
forms a vertex with a 180 � angle inside the domain (be-
cause the older crack has not been disturbed). These ver-
tices thus do not form wedges in the contour. The marked
crack domain in Fig. 3(b) has four sides, but six neighbors.
The inequality of the numbers of sides and delimiting
edges is thus the direct result of the frozen hierarchy of
the crack pattern.

Since at each crack vertex one of the three angles is
equal to 180 �, the average number of sides hsi should
relate to the average number hni of neighbors by hsi �
2=3hni and thus has to be four. Let us emphasize that the
four sided domains are the consequence of the 180 � angle
and not of the right angle between the newer and the older
crack. The average number of neighbors, however, is still
constrained by Euler to be six (see Fig. 2).

A direct demonstration can be derived from the dynam-
ics of formation of the crack pattern, i.e., from the succes-
sive division of the domains. As illustrated in the sketch in
Fig. 4, a four sided domain can be divided either into two
four sided domains or into a triangle and a pentagon. A
triangle can only be divided into a triangle and a quad-
rangle, while a pentagon can be divided into a quadrangle
and a pentagon, or into a hexagon and a triangle. The crack
presents a new side for each daughter domain ( � 2) and
divides two sides of the mother domain (again �2). The
number of sides of the ‘‘daughter’’ domains sa and sb are
thus related to the number of sides of the ‘‘mother’’ domain
s by

sa � sb � s� 4: (4)

We excluded the situation where the crack ends in a corner
of the mother domain. This nongeneric case is neither
stable under perturbations nor observed in real crack pat-
terns: the stress is minimal in a corner and the propagating
crack will avoid this region. Let us now, in analogy to the
topological charge, introduce a geometrical charge qgeo of
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FIG. 4. The possible divisions of a triangle, a quadrangle, and
a pentagon. The numbers indicate the geometrical charges qgeo
of the shapes.
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a s-sided cell as

qgeo � 4� s: (5)

Equation (4) can then be written as a conservation law:

qgeo;a � qgeo;b � qgeo; (6)

the sum of the geometrical charges of the daughter cells is
equal to the geometrical charge of the mother cell. This
conservation law justifies the term charge. In the extended
crack pattern, the average number of sides can be written in
terms of the total geometrical charge Qgeo �

P
qgeo;i:

hsi �
1

N

X
si � 4�

Qgeo

N
: (7)

Since the total geometrical charge is conserved during the
successive divisions, it is equal to the geometrical charge
of the initial cell, and thus of the order of one. If the initial
cell is a quadrangle (qgeo � 0), the average number of sides
is strictly four, otherwise it will converge rapidly to four
as 1=N.

The geometrical charges show a particular dynamic,
which is linked to the fact that the daughter cells become
completely independent. Once a pair of charges (a dipole)
is created, it can never annihilate. Both charges will
‘‘propagate’’ (and transform) independently. Figure 5
shows a example of the propagation of qgeo � �1 defect
during the cell divisions. The charge becomes more and
more localized, and, since the number of cells increases in
time, diluted. During the following divisions, other pairs of
charges are created. It is not clear if the statistical distri-
bution of the charges (or the number of sides) is conserved
during the formation process, i.e., if the successive cell
division is self-similar. This lack of self-similarity would
be complementary to the observed scaling of the crack
width [9].

The crack pattern is a model for a hierarchical space
division observed in other systems. We can now examine
briefly two other examples. A detail of the venation pattern
of a plant leaf is shown on Fig. 6(a). The veins form a
1cm

FIG. 5. The propagation from large scale to small scale of an
qgeo � �1 defect.
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FIG. 6. The venation network of a vegetal leaf. (a) A photo-
graph of the venation pattern. (b) The smaller veins and the free
dangling veinlets are removed, using a image processing de-
scribed in [13].
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FIG. 7. Paris 1760. (a) Map drawn by Robert de Vaugondy,
Didier (1723–1786). (b) Redrawn by the authors.

PRL 94, 054503 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 FEBRUARY 2005
hierarchical system in which the veins form successively
during the leaf growth. When a new vein forms it connects
to older ones at both its ends. As it is the case for the crack
pattern in colloidal materials [9], the thickness of the veins
can be considered as the indicator of their age. A hierarch-
ical reticulum is thus formed with the same type of con-
struction as a crack pattern [12]. In the large scale structure
[Fig. 6(b)], the dominance of the four sided domains is
observed. However, the measurement of the angles at the
vertices reveals that angles close to 180 � are only observed
when a very thin vein joins a large one [13]. Depending on
the relative thicknesses of the veins meeting at a branching
point, the angles between the two vein segments belonging
to the large vein vary between 120 � and 180 �, presumably
because there is a partial reorganization of the veins after
their formation. The criteria for singularities corners in the
cell contour become more subjective, and so does the
counting of sides. We can now turn to a network generated
by human activity. Figure 7 shows an image-processed
detail of a city map of Paris in 1760. The names of the
longer streets indicate that they were originally roads
leading from the center of Paris to neighboring villages
or abbeys; they were there first. Some of the transverse
streets were probably formed as ways for the carts to reach
the fields. With the increase of population density, new
streets became necessary, resulting in the observed struc-
ture. There are several noticeable features. Most of the
vertices are threefold and correspond to the meeting of a
new street with an older one. This means that the division
of a block by a street was usually independent from the
division of other blocks. As in cracks the connection of a
new street has no influence on the shape of the old ones so
that most vertices have one 180 � angle. The street network
has thus the characteristic of a hierarchical reticulum and
05450
the four sided blocks dominate. We chose a map where the
city growth resulted from self organization. With urban
planning, the street networks are globally decided at once
so that the structures are different with, e.g., checkerboard
structures and fourfold (or more) vertices.

The authors would like to thank M. O. Magnasco for
helpful and inspiring discussions.
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