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Attosecond Probing of Vibrational Dynamics with High-Harmonic Generation
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The numerical solution of the time-dependent Schrödinger equation for vibrating hydrogen molecules
in few-cycle laser pulses shows that high-harmonic generation is sensitive to the laser-induced vibrational
motion. More intense harmonics are generated in heavier isotopes, the difference increasing with the
harmonic frequency. Analytical theory reveals a dependence of the harmonics on the vibrational
autocorrelation function. With the help of a genetic algorithm, the nuclear motion can be reconstructed
from the harmonic spectra with sub-fs time resolution.
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The laser-based measurement of ultrafast processes in
atoms and molecules has recently advanced into the time
scale below one femtosecond. One method [1] utilizes
attosecond light pulses obtained from high-order harmonic
generation (HHG). In this scheme, the attosecond pulse
triggers an atomic process which is then probed by a
synchronized laser light wave. Another method [2,3] ex-
ploits the presence of attosecond electron wave packets
during the interaction of an atom or molecule with an
intense laser. These wave packets correspond to electrons
that recollide with the core after an excursion in the con-
tinuum. Information about the system at the time of recol-
lision is encoded in the products of the collision process: in
Refs. [2,3], the kinetic-energy release after fragmentation
caused by inelastic scattering was measured.

Instead of fragmentation, recollision may also lead to
recombination accompanied by the emission of a photon,
i.e., HHG [4,5]. This Letter proposes HHG as an alterna-
tive approach to the ultrafast measurement of vibrational
dynamics. We consider a vibrational wave packet being
launched in the event of ionization by an intense laser field.
The subsequent dynamics of the molecular ion is corre-
lated in time with the motion of the electronic continuum
wave packet. The recombination of a recolliding electron
then probes the state of the parent ion. Hence, the time
between ionization and recombination is equivalent to the
delay time in a pump-probe scheme. As will be explained
in detail below, the scheme involving HHG differs from the
method of Refs. [2,3] in two important aspects: (i) due to
the relation between the harmonic frequency and the return
time of the electron, a range of delay times can be studied
without changing the laser wavelength; (ii) the emission of
harmonics corresponds to a transition from a state that has
evolved over time back into the ground state of the mole-
cule, and the harmonic intensity depends on the overlap of
the two states. Therefore, the harmonics are sensitive to
small changes of the molecular geometry occurring within
a fraction of the vibrational period.

The description of the laser-driven correlated electronic
and nuclear wave packet dynamics requires a non-Born-
Oppenheimer (non-BO) treatment. For the H�

2 molecular
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ion and simplified models thereof, such calculations have
been carried by several workers [6]. In molecular ions,
however, charge resonance enhanced ionization [7] tends
to form complicated initial nuclear wave packets at dis-
tances much larger than the equilibrium separation. Well
confined wave packets around the ground state bond length
are created in strong-field ionization of H2 [8,9]. Non-BO
calculations of HHG in one-dimensional H2 [10] have been
carried out previously, but have focused on selection rules
rather than ultrafast wave-packet dynamics. Here, we in-
troduce a non-BO model of H2 with two-dimensional
electron dynamics. This allows us to study the influence
of the molecular orientation. In order to limit the computa-
tional effort, and since we are here not investigating two-
electron effects, we employ a single-active-electron ap-
proach. Although this method does not provide access to
processes [2,3] involving inelastic rescattering, it is well
suited to describe single-electron phenomena such as
HHG. The orientation � of the molecule relative to the
field is held fixed, since the rotational motion is negligible
on the few-cycle time scale (�10 f s). In our model, the
effective velocity-gauge Hamiltonian for the interaction
with a linearly polarized laser field E�t� along the x axis
reads (atomic units are used throughout)
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� Vef f�R; r�; (1)

where A�t� � �
R
t
�1 E�t

0�dt0, M is the mass of one nu-
cleus, and R, r are the internuclear distance and the elec-
tron coordinate, respectively. The interaction between the
active electron and the nuclei is chosen as

Vef f�R; r� � V�
BO�R� �

X
j�1;2

Z�R; jr�Rjj����������������������������������
jr�Rjj

2 � 0:5
q ; (2)

where Rj are the positions of the nuclei. For jrj ! 1 this
function approaches V�

BO�R�, the lowest BO potential of
H�

2 . This amounts to the assumption that the removal of
one electron creates H�

2 in its electronic ground state. In
the soft-core interaction, we have introduced an effective
nuclear charge Z�R;u�� �1�exp��u2=�2�R��=2, which
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mimics the average screening of the nuclei by the second
electron: Z�R; u� ! 1 for u! 0, and Z�R; u� ! 1=2 for
u! 1. The screening parameter ��R� is adjusted such
that the resulting lowest BO potential of the neutral model
molecule matches the real H2 BO potential taken from
[11]. For the laser field, trapezoidally shaped 6-cycle
pulses are chosen. The wave function �R; r; t� is repre-
sented in Cartesian coordinates, and the time-dependent
Schrödinger equation is solved numerically by the split-
operator method [12] with 2048 time steps per laser cycle,
starting from the ground state of the system. Absorbing
boundaries are employed for all coordinates. The spec-
trum of emitted radiation is calculated by Fourier trans-
forming the time-dependent dipole acceleration [13]. A
grid size of Lx � Ly � 180 � 45 a:u: for the electron and
a range of R � 0:6 . . . 3:7 a:u: for the internuclear distance
have proven sufficient for converged harmonic spectra.

Figure 1 shows a sample of calculated harmonic spec-
tra for various orientations of H2 in a 780 nm pulse
with intensity 4 � 1014 W=cm2 (laser frequency ! �
0:0584 a:u:, and field amplitude E0 � 0:107 a:u:). The
cutoff at the energy 3:17Up � Ip [4,5] is clearly visible in
all spectra. Here, Up � E2

0=�4!2� is the ponderomotive
potential and Ip is the ionization potential.

When � is not too large, the spectrum exhibits a mini-
mum due to two-center interference as described for
clamped nuclei in Refs. [14,15]. Thus, as a first important
result, we find that this minimum persists when the vibra-
tional motion is taken into account.

In order to study the influence of vibrations, we move on
to a comparison of isotopes. In Fig. 2, we compare the
harmonics from the molecules H2, D2, and T2, aligned
perpendicular to the field. This orientation is chosen be-
cause it does not give rise to a two-center interference
pattern. The calculation has been carried out for two laser
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FIG. 1. Calculated harmonic spectra for H2 in a 780 nm pulse
with 4 � 1014 W=cm2 intensity. The orientation of the molecule
with respect to the field is (a) � � 0�, (b) � � 30�, (c) � � 60�,
(d) � � 90�.
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wavelengths, 780 nm and 1200 nm. In both cases we
clearly observe that heavier isotopes generate more intense
harmonics. The ratio between the isotopes equals approxi-
mately unity when the harmonic order goes to zero. On
average, the ratios grow with increasing harmonic order,
even though the behavior is nonmonotonic. It is noticeable
that the oscillations are most pronounced near the cutoff.
For D2 vs H2, an average ratio of about 1.5 is reached at the
cutoff.

Experiments with randomly oriented molecules are
much easier realized than with aligned molecules. The
theoretical description of a random ensemble, however,
requires the calculation of the harmonic intensities and
phases for all possible orientations, and these contributions
have to be added coherently [16]. This analysis has been
carried out for D2 and H2 in the 780 nm case, see Fig. 2(a).
The resulting ratio is almost identical to the case of per-
pendicular alignment. The ratio is even slightly enhanced.
The similarity arises because the contributions near � �
90o dominate the signal in the random ensemble for
two reasons: (a) the contributions are weighted by a geo-
metrical factor sin� [16]; (b) two-center interference is
constructive around � � 90o [15]. The isotope effect
should therefore be easily measurable in an experiment
with a randomly oriented ensemble. Even if the experi-
mental densities of H2 and D2 differ from each other, the
slope in the harmonic ratio will survive.

The difference between the isotopes indicates that
slower vibration leads to more intense harmonics. To in-
vestigate this point further, we incorporate the vibrational
motion into the Lewenstein model of HHG [17], which was
formulated for atoms. We start from the length-gauge
Hamiltonian for a laser-driven H2 molecule with fixed
orientation,
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where r1, r2 are the electron coordinates and V is the sum
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FIG. 2. Ratio between harmonic intensities in different iso-
topes (aligned perpendicular to the field): D2 vs H2 (circles
connected by solid lines), T2 vs H2 (squares connected by dashed
lines). Shown are the ratios for odd harmonics at 780 nm
wavelength [panel (a)] and 1200 nm wavelength [panel (b)].
Panel (a) includes also the ratio D2 vs H2 for randomly oriented
molecules (stars). The laser intensity is 4 � 1014 W=cm2.
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of the Coulomb interactions between all particles. Follow-
ing Ref. [17], we assume that (a) no bound states other than
the BO ground state are populated, (b) the depletion of the
ground state can be neglected, and (c) while in the con-
tinuum, the active electron does not interact with the core.
Additionally, we assume that only a single electron can
become active; i.e., if one of the electrons has been excited
into the continuum, the second electron will not couple to
the field and will always remain in the lowest BO state of
the molecular ion.

We can then expand the full wave function as

��r1; r2; R; t� � e�iE0t
�

�0 �
Z d3k

�2��3 ��k; R; t�

� �eik�r1 �
R �r2� � eik�r2 �

R �r1�

�
; (4)

where �0 � �0�R� R�r1; r2� is the real-valued ground-
state wave function of H2 (or its isotopes) in the BO
approximation, E0 is the ground-state energy, and  �

R �r�
is the electronic ground-state BO wave function of H�

2 .
Neglecting the non-BO couplings and laser-field interac-
tion for  �

R , the time-dependent Schrödinger equation
i@�=@t � H� is transformed to
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where dx�k; R� �
R
d3r1d3r2e�ik�r1 �

R �r2�x1 R�r1; r2� is
the bound-free dipole matrix element. By taking

dx�k; R��0�R� � !dx�k���R; 0� (6)

we make the assumption that ionization launches a vibra-
tional wave packet ��R; 0� that is uncorrelated with the
initial momentum k of the outgoing electron. Under the
initial condition ��k; R; 0� � 0, the solution of Eq. (5) is

��k;R;t���i
Z t
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dt0E�t0� !dx�k�A�t��A�t0����R;t� t0�

�e�i
R
t

t0
dt00f�k�A�t��A�t00�2=2�E0g (7)

with A�t� � �A�t�; 0; 0�. The vibrational wave packet
��R;  � obeys the Schrödinger equation
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Neglecting continuum-continuum transitions, the time-
dependent dipole moment along x, Dx�t� � �h��t�jx1 �
x2j��t�i, is

Dx�t� � �2
Z d3kdR

�2��3 d
�
x�k; R��0�R���k; R; t� � c:c: (9)

In this last equation, the use of approximation (6) is ques-
tionable because the range of possible values for k and R is
large, and interference effects give rise to a strong depen-
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dence of the matrix element on the projection of the inter-
nuclear distance on the field axis [15]. Nevertheless the
approximation is reasonable in the case of perpendicular
alignment where the two-center interference is construc-
tive independently of R. This leads to

Dx�t� � 2i
Z t

0
dt0E�t0�C�t� t0�

Z d3p

�2��3
!d�x�p�A�t�

� !dx�p�A�t0��e�i
R
t

t0
dt00f�p�A�t00�2=2�E0g � c:c:;

(10)

where

C� � �
Z
dR���R; 0���R;  � (11)

is the vibrational autocorrelation function. Physically,  �
t� t0 is the travel time between ionization and recombi-
nation. Equation (10) is essentially identical to the
Lewenstein model except for the appearance of C� �.
The intensity of a harmonic that is dominated by a single
value of  is therefore proportional to jC� �j2.

Figure 2 is easily interpreted in terms of the autocorre-
lation function. The vibrational motion is faster in the
lighter isotope and therefore, C� � decreases more rapidly
away from its initial value, leading to weaker harmonics.
Although in principle many different travel times contrib-
ute to one harmonic, long travel times have only little
weight due the spreading of the electron wave packet. If
only the shortest trajectory is taken into account, we have a
one-to-one mapping between travel time and harmonic
frequency, with larger times producing higher frequencies
(see Fig. 1 of Ref. [17]). Thus the difference between
isotopes grows with increasing frequency as the dominant
travel time increases. For harmonic frequencies close to the
cutoff, HHG is dominated by a pair of nearly equal travel
times. The interference between the two amplitudes is
known to produce a pattern of minima and maxima in
the spectrum. Figure 2 shows that a similar pattern appears
in the ratio between isotopes.

For the case of longer pulses not considered here, the
weight of later returns may be substantial due to maxima in
the autocorrelation function related to the vibrational pe-
riod. With few-cycle pulses this possibility is excluded.

To extract dynamical information from the harmonic
spectra, we first map the photon energies to the travel
time using the semiclassical model of Ref. [4]: by ioniza-
tion, a classical free electron appears with zero velocity at
the origin, is accelerated by the time-dependent field, and
finally revisits the core with return energy Er. Recombina-
tion generates a photon with energy !h# � Er � Ip. Includ-
ing only short trajectories (! < 4:09 a:u:), the travel time
as a function of the return energy is fitted as

! � 0:786�f�Er=Up�
1:207 � 3:304�f�Er=Up�

0:492 (12)

with f�x� � arccos�1 � x=1:5866�=�. The result of the
analysis is shown in Fig. 3(a) for D2=H2 in the 1200 nm
4-3
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FIG. 3 (color online). (a) Data points show the ratio between
harmonics in D2 and H2 versus electron travel time for a
1200 nm laser pulse. Smooth lines are the autocorrelation ratio
calculated from the vibrational wave-packet dynamics in poten-
tials from the reconstruction procedure (solid, red) or in the exact
H�

2 BO potential (dashed line). (b) Time evolution of the
internuclear distance, as reconstructed from the D2=H2 harmonic
spectra (solid, red) and time evolution in the exact potential
(dashed lines).
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case. For comparison, we solve the vibrational Schrödinger
equation, Eq. (8), numerically with the initial condition
��R; t � 0� � �0�R�, and evaluate the autocorrelation
function, Eq. (11), for H�

2 and D�
2 . The figure shows that

the resulting autocorrelation ratio jCD�
2 � �=CH�

2 � �j2 pre-
dicts the correct trend, but slightly overestimates the ratio
of harmonic intensities. To reconstruct the vibrational dy-
namics from the spectra of D2 and H2, we first note that the
ratio of harmonics appears to approach unity as  ! 0.
With Eq. (11), this means that the initial wave packets
��R; 0� in H2 and D2 have approximately the same norm.
Excluding the unlikely accident that this is achieved by a
special R dependence of the dipole matrix element, it
shows that ��R; 0� � �0�R�. Knowing the initial state,
we adapt a genetic algorithm (GA) [18] to optimize an
ionic BO potential such that the calculated wave-packet
motion (obtained by solving the 1D vibrational
Schrödinger equation) minimizes the sum of squared de-
viations of the autocorrelation ratio from the ratio of
harmonics. The potential is parametrized as

V��R� �
1

R
�

1

2
�

'1

�'2 � R�
�

'3

�'4 � R2�

� '5 exp��'6R� � '7 exp��'8R2�: (13)

Here, we have used the known limits V��R� ’ 1=R, R! 0
and V��R� ! �0:5 a:u:, R! 1 to impose restrictions on
the potential. We furthermore enforce V��R� ’ 2 � 1=R
for R! 0 by eliminating one parameter, and we discard
potentials that do not give initially repulsive wave-packet
motion. The GA is iterated 1000 times with a population
size of 40 individuals. The results depend only slightly on
the GA parameters. For numerous runs, the obtained time
evolution of the expectation value of the internuclear dis-
tance in H�

2 =D�
2 is shown in Fig. 3(b). The result is quite

similar to the propagation in the exact BO potential; see the
dashed curves in Fig. 3(b). The corresponding autocorre-
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lation ratios fit the harmonic ratios perfectly, as can be seen
in Fig. 3(a). The small deviations with respect to the exact
potential arise because ��R; 0� � �0�R� is not strictly ful-
filled. We conclude that if a small number of reasonable
assumptions are made, the nuclear wave-packet motion can
be reconstructed with attosecond time resolution. In the
experiment of Ref. [2], the laser wavelength was varied to
measure the ionic state for various delay times. The present
scheme gives access to different delay times without
changing the wavelength, simply by observing different
harmonic orders.

In summary, HHG in molecules depends on the isotope
and gives temporal information about the vibrational dy-
namics. The harmonics measure approximately the vibra-
tional autocorrelation function of the molecular ion with
attosecond resolution. We have demonstrated a scheme to
reconstruct the nuclear motion from measurable spectra
and have therefore presented an alternative approach to
measurements on the attosecond time scale.
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