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Asymptotic Silence of Generic Cosmological Singularities
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In this Letter we investigate the nature of generic cosmological singularities using the framework
developed by Uggla et al. We study the past asymptotic dynamics of general vacuum G2 cosmologies,
which are expected to capture the singular behavior of generic cosmologies with no symmetries at all. Our
results indicate that asymptotic silence holds, i.e., particle horizons along all time lines shrink to zero for
generic solutions. Moreover, we provide evidence that spatial derivatives become dynamically insignifi-
cant along generic time lines, and that the evolution into the past along such time lines is governed by an
asymptotic dynamical system which is associated with an invariant set—the silent boundary. We identify
an attracting subset on the silent boundary that organizes the oscillatory dynamics of generic time lines in
the singular regime. Finally, we discuss the dynamics associated with recurring spike formation.
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The singularity theorems of Penrose and Hawking [1]
state that generic cosmological models contain an ini-
tial singularity, but do not give any information on the
nature of this singularity. Heuristic investigations of
this issue led Belinski��, Khalatnikov, and Lifshitz [2]
(BKL) to propose that a generic cosmological initial
singularity is spacelike, local and oscillatory. Uggla–
van Elst–Wainwright–Ellis [3] (UEWE) reformulated
Einstein’s field equations (EFEs) by introducing scale-
invariant variables which have the property that all indi-
vidual terms in EFEs become asymptotically bounded, for
generic solutions. This made it possible to characterize a
generic cosmological initial singularity in terms of specific
limits. The numerical study of the picture proposed by
UEWE was initiated in Ref. [4], specializing to Gowdy
vacuum spacetimes which have a nonoscillatory singular-
ity. This letter presents the results of the first detailed study
of the oscillatory asymptotic dynamics of inhomogeneous
cosmologies from the dynamical systems point of view
introduced in UEWE.

Here we focus on vacuum cosmologies with an Abelian
symmetry group G2 with two commuting spacelike Killing
vector fields, and the spatial topology of a 3-torus. This is
arguably the simplest class of inhomogeneous models that
is expected to capture the properties of a generic oscillatory
singularity. Numerical investigations of G2 spacetimes
supporting the BKL proposal were carried out by Weaver
et al. in Refs. [5,6].

UEWE used an orthonormal frame formalism and fac-
tored out the expansion of a timelike reference congruence
e0 by normalizing the dynamical variables with the iso-
tropic Hubble expansion rate H of e0. This yielded a
dimensionless state vector X � �E�

i� � S, where E�
i are

the Hubble-normalized components of the spatial frame
vectors orthogonal to e0; e� � e�i@i, E�

i � e�i=H.
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The approach to an initial singularity will be said to be
asymptotically silent for time lines along which E�

i ! 0,
and asymptotically silent and local for time lines along
which E�

i ! 0 and E�
i@iS ! 0; in the latter case E�

i � 0
defines an unphysical invariant set, the silent boundary. (In
UEWE the concept of a ‘‘silent singularity’’ was defined.
However, the possibility of ‘‘recurring spike formation,’’
discussed below, motivates the present distinctions and
definitions.) The evolution equations for S on the silent
boundary are identical to EFEs for spatially self-similar
(SSS) and spatially homogeneous (SH) models, in a sym-
metry adapted Hubble-normalized orthonormal frame [4].

Motivated by the discussion in UEWE, we conjecture
that U�

vac, the union of the bounded vacuum SH Type-I
(Kasner) and SH Type-II subsets on the silent boundary,
form an attracting subset that organizes the oscillatory
dynamics of generic time lines approaching an asymptoti-
cally silent and local vacuum singularity.

To obtain the equations for vacuum G2 cosmologies,
we introduce coordinates ft; x; y1; y2g and an orthonormal
frame: e0 � N�1@t, e1 � e1

1@x 
 e1
2@y1 
 e1

3@y2 , e2 �

e2
2@y1 , and e3 � e3

2@y1 
 e3
3@y2 cf. Ref. [7]; N and e�

i

are functions of t and x only. For comparison with previous
work, e2 is aligned with the Killing vector field @y1 . We
choose 2�-periodic coordinates x, y1, and y2, yielding a
spatial 3-torus topology, and a temporal gauge such that the
area density of the G2 orbits is given by A :�
�e2

2e3
3��1 / e�t; this is convenient since the level sets of

A give a global foliation for maximally globally hyper-
bolic vacuum G2 cosmologies [8], and since t ! 
1 at
the singularity [9]. The G2 symmetry implies 0 � e2�f� �
e3�f� for any coordinate scalar f. Thus, only N�1@t and
e1

1@x act nontrivially on coordinate scalars, and hence the
equations of all spatial frame variables except e1

1 de-
couple; the essential Hubble-normalized variables are
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thus E1
1 :� e1

1=H and a subset of connection compo-
nents, which depend on t and x only. Inserting the above
restrictions into the relations in Appendix 5 of UEWE
yields 0 � A� � N1� � N33 � �12 � _U2 � _U3 (� � 1,
2, 3), and the spatial frame gauge R1 � ��23, R2 �
��31, R3 � 0. In addition, it is convenient to define:
�
 :� 1

2 ��22 
�33� � � 1
2 �11, �� :� 1

2
��

3
p ��22 � �33�,

�� :� 1
��

3
p �23, �2 :�

1
��

3
p �31, N� :� 1

2
��

3
p N22, and N� :�

1
��

3
p N23. The Hubble-normalized variables have the follow-

ing physical interpretation: �
, ��, ��, �2 are shear
variables for e0; _U � _U1 describes the acceleration of e0;
N� and N� are spatial connection components that deter-
mine the spatial curvature; R� yields the angular velocity
of the spatial frame fe�g. The lapse function is given by
N � � 1

2H
�1�1
�
�

�1. The deceleration parameter q
and the spatial Hubble gradient r are defined by �q
 1� :�
�H�1@0H and r :� �H�1@1H, respectively, with @0 :�
�2�1
�
�@t and @1 :� E1

1@x. These definitions yield
the integrability condition @0r� @1q � �q
 2�
�r�
�r� _U��q
 1�.

Imposing the above restrictions and gauge choices on
EFEs in vacuum yields the following evolution equations
and constraints:

@0E1
1 � �q
 2�
�E1

1; (1a)

@0�1
 �
� � �q� 2��1
 �
� 
 3�2
2; (1b)

@0�2 � �q� 2� 3�
 

���

3
p

����2; (1c)

@0�� 
 @1N� � �q� 2��� 
 �r� _U�N�


 2
���

3
p

�2
� � 2

���

3
p

N2
� �

���

3
p

�2
2; (1d)

@0N� 
 @1�� � �q
 2�
�N� 
 �r� _U���; (1e)

@0�� � @1N� � �q� 2� 2
���

3
p

�����

� �r� _U 
 2
���

3
p

N��N�; (1f)

@0N� � @1�� � �q
 2�
 
 2
���

3
p

���N�

� �r� _U � 2
���

3
p

N����; (1g)

and

0 � �@1 � r
 _U��1
 �
�; (2a)

0 � 1� ��2

 
 �2

2 
�2
� 
 N2

� 
 �2
� 
 N2

��; (2b)

0 � �1
 �
� _U
 3�N��� � N����; (2c)

0 � �@1 � r

���

3
p

N���2; (2d)

where q :� 2��2

 
 �2

� 
�2
� 
�2

2� �
1
3 �@1 � r
 _U� _U.

Since we are concerned with generic features, we restrict to
the case �
 � �1 (�
 � �1 yields the Minkowski
spacetime). We use the gauge constraint (2a) and the
Codacci constraint (2c) to solve for r and _U and so obtain
the reduced state vector X � �E1

1;�
;�2;��; N�;
��; N�� � �E1

1� � S. Note that the Gauss constraint (2b)
implies that the components of S are bounded.
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Because of the symmetry restrictions, E1
1 is the only

spatial frame variable in our state space; in the present con-
text asymptotic silence is thus associated with E1

1 ! 0,
while E1

1 � 0 is referred to as the silent boundary. Our
numerical experiments, which employ the RNPL [10] and
CLAWPACK [11] packages with up to 216 spatial grid points
on the x interval �0; 2��, indicate that asymptotic silence
holds in the present G2 case for all time lines of a generic
solution. Indeed, our numerical simulations indicate that
maxx�E1

1� decays exponentially. Moreover, they indicate
that limt!
1�� :� jjE1

1@xSjj2� � 0 along generic time
lines of a generic solution; i.e., generically the singularity
is asymptotically silent and local, and hence in this case the
asymptotic dynamics is governed by the equations on the
silent boundary.

On the silent boundary E1
1 � 0, the integrability con-

dition and Eq. (1e) yield r2 � �3fN2
�, while Eq. (2d)

reduces to 0 � �r�
���

3
p

N���2. In contrast to Ref. [4],
we are here concerned with the general case �2 � 0, for
which r �

���

3
p

N� and hence f � �1; in this case the
equations on the silent boundary are identical to the
Hubble-normalized equations of the exceptional SSS
Type-�1VI0 models; see Wu, p. 635 in Ref. [12].

Our numerical experiments suggest that, in addition to
E1

1 ! 0, C :� � _U; r; N�; N���� ! 0 holds for generic
time lines of a generic solution when t ! 
1. On the
silent boundary E1

1 � 0, C � 0 yields the Kasner and SH
Type-II subsets which are defined by 0 � E1

1 � N� �
N� � _U � r, 1 � �2


 
 �2
� 
 �2

� 
 �2
2, q � 2 and 0 �

E1
1 � �� � N� � _U � r, q � 2�1� N2

��, respectively.
With the present gauge choices, the Kasner subset con-

tains a subset of equilibrium points: 0 � E1
1 � �2 �

N� � �� � N� � _U � r, 1 � �2

 
�2

�, the Kasner
circle, K, which plays an essential role for the asymptotic
dynamics. A linear stability analysis of K shows that all
variables are stable when t ! 
1, except for
�N�;��;�2� which obey

N� � N̂�e
��1�k�x��t; (3a)

�� � �̂�e
�k�x�t; (3b)

�2 � �̂2e
�3�k�x���1
k�x��t=4; (3c)

E1
1 and C decay exponentially and uniformly [N��� /

exp��t�]. Here ‘‘hatted’’ variables are functions of x only.
On K, �
 � �̂
, �� � �̂�, and k�x� :��

���

3
p

�̂��x�=
�1
�̂
�x��. Thus, N�, ��, �2 are unstable when k�x�>
1, k�x�< 0, �1< k�x�< 3, respectively; see Fig. 1(a).
The unstable mode N� induces physical curvature transi-
tions, associated with the SH Type-II subset on E1

1 � 0,
while �� and �2 induce frame transitions that lead to
rotations of the spatial frame and multiple representations
of the same solution, see Fig. 1(b); nevertheless, for the
present frame choice it is these gauge transitions that make
repeated curvature transitions possible, and hence they
1-2
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FIG. 2 (color online). Projections onto the ��
���-plane of a
state space orbit along the typical time line x � 0:3 for (a) the
full G2 system, and (b) its restriction to the silent boundary. In
both cases the orbits approach U�

vac, i.e., � ! 0 in (a), and
�E1

1;C� ! 0 in both (a) and (b).
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FIG. 1 (color online). (a) Unstable variables on K, and
(b) single transition sets associated with N� (dotted lines), ��

(dash-dotted lines) and �2 (solid lines).
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have indirect physical implications. The N�, ��, and
�2 transitions imply that k�x� changes according to the
rules k ! 2� k, k ! �k, and k ! �k
 3�=�k� 1�,
respectively.

The variables and equations that describe U�
vac on

E1
1 � 0 and the exceptional SH Type-VI�

�1=9 case, as
given by Hewitt et al. [13], are identical. As shown in
Sec. V of Ref. [13], there exist two integrals that describe
the transition orbits. Although multiple transitions are
possible, single transitions increasingly dominate.
However, since frame transitions constitute gauge effects
we will not pursue this further. What is important physi-
cally is that the variety U�

vac induces an infinite sequence
of Kasner states related by SH Type-II curvature transi-
tions according to the frame invariant BKL map: u ! u�
1, if u � 2, and 1=�u� 1�, if 1< u< 2, where u is de-
fined frame invariantly by det��� � 1

3 ��
���

���
� �

2� 27u2�1
 u�2=�1
 u
 u2�3.
Numerical investigations of vacuum SH Type-VI�

�1=9

and SSS Type-�1VI0 models indicate that generic solutions
asymptotically approach U�

vac. Our investigation suggests
that this is also true for the evolution associated with
generic time lines of the present inhomogeneous vacuum
G2 cosmologies, since our numerical results indicate that
�E1

1;C;�� ! 0 when t ! 
1 for a generic time line, see
Fig. 2, and that thus the BKL map holds asymptotically for
such a time line.

Belinski�� [14] expressed concern that spatial structure,
created by the effect of different time lines going through
transitions at different times, could cause problems for the
BKL scenario. Numerical experiments show that this is not
the case for generic time lines. The reason is that spatial
structure, created by the mechanism described above, de-
velops on superhorizon scales; � ! 0 within the shrinking
particle horizon of a generic time line when t ! 
1.

Our investigations indicate that E1
1 ! 0 as t ! 
1 for

all time lines of a generic solution, and that �C;�� ! 0 for
generic time lines so that U�

vac is a local past attractor.
However, there are indications that spiky features, closely
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related to the spikes in Gowdy vacuum spacetimes, form
along exceptional time lines; for such time lines neither C
nor � has a limit.

Recall that for the present general G2 case, the whole of
K is unstable with respect to at least one of N�, ��, �2;
see Eqs. (3). As in the Gowdy case, spike formation is
caused by the occurrence of a zero for one of these varia-
bles at a point �t; x�t�� when the system is close to K. It
follows from Eqs. (1c) and (2d) that, for a generic smooth
solution, �2 cannot cross zero and thus produces no spikes.
Spikes in �� are ‘‘false’’ (gauge) spikes, while spikes in
N� are ‘‘true’’ (physical) effects which yield inherently
inhomogeneous dynamical features in the Hubble-
normalized Weyl curvature scalars. Linear analysis at K
shows

E1
1 / Ê1

1e�t; (4a)

E1
1@xN� / Ê1

1�@xN̂� 
 tN̂�@xk�x��e��2�k�x��t: (4b)

The state space orbits of the spatial points outside the
particle horizon of �t; x�t��, defined by N��t; x�t�� � 0,
undergo curvature transitions with N� � O�1� and oppo-
site signs on either side of x�t� when k�x�> 1; since x�t�
does not go through such a transition this leads to the
formation of a spike. For k�x�> 2, @1N� � E1

1@xN� is
unstable on K, and hence grows in modulus at �t; x�t��,
which leads to a growth in modulus of ��. Since the
particle horizon size at �t; x�t�� is of order E1

1 (see
UEWE) the above implies that @xN� grows to order
1=E1

1 and that @1N�, and thus also �, is then O�1� at
�t; x�t��. It therefore follows that the dynamics fails to be
local. Moreover, one can similarly argue that C becomes
O�1�. Since the dynamics fails to be local at �t; x�t��, it is
not governed by the silent boundary dynamical system.
Nevertheless, our investigations indicate that the asymp-
totic dynamics is quite simple, and that it is related to that
on the silent boundary. Numerical simulations show that
the orbit described by S�t; x�t�� during the formation
and smoothing out of a spike is described by the map
1-3
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FIG. 3 (color online). Projection onto the ��
���-plane of a
state space orbit undergoing a spike transition, followed by �2

and �� induced frame transitions and another spike transition
(solid lines). The combination of N� curvature and �� frame
transitions corresponding to the second spike transition is shown
(dashed lines). See also p. 152 in Ref. [15].
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k ! 4� k, equivalent to a sequence of local N�–��–N�

transitions; following Ref. [15], we refer to this behavior as
a spike transition; see Fig. 3. The simplicity of this struc-
ture suggests that there may exist an effective dynamical
system governing the spike transitions, playing a role
analogous to that of the silent boundary system.

Numerical investigations suggest that an isolated zero in
N� may persist as t ! 
1; if true this yields an infinite
sequence of recurring spike transitions. Since the horizon
scale decays exponentially, one expects x�t� to converge
exponentially to a point xspike, and since the dynamics fails
to be local during spike transitions, it follows that C and �
fail to have limits along the time line x � xspike; we refer to
such a time line as a spike time line. Time lines along which
�C;�� ! 0 as t ! 
1 are called nonspike time lines.
Since the opportunities for new spike formation occur at
increasing time intervals due to the fact that K consists of
equilibrium points for the system, and since the horizon
size decreases exponentially, we conjecture that generic
time lines are nonspike time lines. Our analysis supports
the conjecture that as t ! 
1 the Kretschmann scalar
becomes unbounded, also along spike time lines.

For the Gowdy case (�2 � 0), the sequence of spike
transitions terminates when k�x�t�� reaches the interval
�0; 2� on the lower part of K; see also Ref. [16]. If
k�x�t�� reaches the interval �0; 1�, the spike disappears
completely, while in the interval �1; 2� a permanent spike
is formed for which � ! 0. Hence, for the Gowdy case,
� ! 0 uniformly, and thus the singularity is asymptoti-
cally silent and local for all time lines.

The exponentially shrinking particle horizons of the
spike time lines cause severe numerical difficulties.
Another obstacle are the subsets associated with the Taub
points T� [cf. Figure 1(a)]; in the present case T1 in
particular. For SH Type-IX models, studied by Ringström
05110
[17], the system spends a dominant portion of its time
undergoing oscillations in the vicinity of the Taub points;
this can be expected to hold also in the present G2 case. In
G0 cosmologies, recently studied numerically by Garfinkle
[18] in terms of the framework of UEWE, these issues
should cause formidable problems; their resolution is
likely to constitute a major step toward a rigorous analysis
of generic spacetime singularities, and an understanding of
the cosmic censorship problem.
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