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A new algorithm is presented, which allows us to calculate numerically the partition function Z for
systems, which can be described by arbitrary interaction graphs and lattices, e.g., Ising models or Potts
models (for arbitrary values q > 0), including random or diluted models. The new approach is suitable for
large systems. The basic idea is to measure the distribution of the number of connected components in the
corresponding Fortuin-Kasteleyn representation and to compare with the case of zero degrees of freedom,
where the exact result Z � 1 is known. As an application, d � 2 and d � 3 dimensional ferromagnetic
Potts models are studied, and the critical values qc, where the transition changes from second to first
order, are determined. Large systems of sizes N � 10002 and N � 1003 are treated. The critical value
qc�d � 2� � 4 is confirmed and qc�d � 3� � 2:35�5� is found.
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The partition function is of fundamental importance in
statistical physics [1] and has many applications in other
fields like quantum mechanics [2], quantum field theory
[3], general relativity [4], biophysics [5] and chemistry [6].
Unfortunately only a few models are analytically tractable
[7]. There is also a fundamental relation to theoretical
computer science [8] because obtaining the partition func-
tion belongs to the class of nondeterministic polynomially
hard problems [9], i.e., there is no efficient exact algorithm.
Hence, Monte Carlo (MC) simulations [10,11] are usually
applied. The standard approach to obtain the partition
function is to measure the free energy by thermodynamic
integration of the specific heat, i.e., the fluctuations of the
energy. Since this approach is based on measuring fluctua-
tions, it is not very efficient, hence limited to small sizes.
To overcome this problem, recently Wang and Landau
(WL) introduced [12] a simple yet very efficient method
to obtain the partition function. The key idea is to measure
the density of states by performing a biased random walk
in energy space via spin flips. It works well for unfrustrated
systems, e.g., the standard q-state Potts model [13], which
has become a standard testing ground for Monte Carlo
algorithms. The Potts model is of profound interest, be-
cause, for dimensions d larger than 1, it exhibits order-
disorder phase transitions [14], which are of second order
for q smaller than a critical value qc�d�, while they are of
first order for q > qc�d�. It is analytically proven [15] that
qc�2� � 4, but, e.g., for d � 3, the exact value of qc is not
known. From various analytical work [16–18] and simu-
lations of moderate-size systems [19–21], 2< qc�3�< 3
seems likely. Since the WL method is based on spin flips, it
works only for integer values of q, hence the partition
function for 2< q< 3 cannot be obtained for large sys-
tems in this way.

In this Letter, an algorithm is presented, which allows
us to calculate with high precision numerically the parti-
tion function for a large class of systems, e.g., for the
q-state Potts models for arbitrary real values q > 0. Its
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partition function is denoted with Zq here. The approach
works for arbitrary interaction graphs, also dilute systems
or with random interactions and at any given temperature
T. The basic idea is to measure the distribution of the
number of connected components in the corresponding
Fortuin-Kasteleyn (FK) representation [22] and to compare
with the distribution of the case of zero degrees of freedom
(q � 1), where the exact result Z1 � 1 is known. Large
systems like N � 10002 or N � 1003 can be treated here,
because for the MC simulation, the cluster algorithm of
Chayes and Machta [23] is applied. Using this combined
approach the critical value qc�d � 2� � 4 is confirmed and
qc�d � 3� � 2:35�5� is found. The outline of this Letter is
as follows. Next, the model is defined. Then the algorithm
for calculating the partition function is presented. In the
main part, the results for the d � 2 and d � 3 Potts models
are shown. Finally a summary is given.

The q-state Potts model [13] for integer values of q
consists of N spins 
i 2 f1; . . . ; qg living on the sites of
an arbitrary graph or lattice G, with the Hamiltonian H �

�
P

�i;j���
i;
j
� 1�, where the sum runs over the edges

�i; j� of G, and � is the Kronecker delta. For G, here
d-dimensional hypercubic lattices of size L having peri-
odic boundary conditions with nearest-neighbor inter-
actions are considered, i.e., N � Ld. The partition function
Zq �

P
f
ig

e�H=T , T being the temperature, can be written
in the FK representation [22] as

Zq �
X

G0	G

Wq�G
0�



X

G0	G

pNb�G0��1� p�Nb�G��Nb�G0�qNc�G0�; (1)

where the sum runs over all subgraphs of G having the
same set of sites and any subset of edges, Wq�G0� is the
weight of graph G0, p � 1� e�1=T ; Nb�G�, Nb�G0� are
the number of edges in G, G0, respectively; and Nc�G0� is
the number of connected components in G0. The FK rep-
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FIG. 1. Free energy F per spin as a function of the temperature
T of the two-dimensional Ising model (q � 2) obtained by the
algorithm and by an exact calculation for system size L � 1000.
The inset shows the relative error ��T�. For each independent
value of temperature, only a total of 5:5 105 MC sweeps were
performed.
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resentation allows for an extension of the model to arbi-
trary real values of q > 0.

For the case of zero degrees of freedom, q � 1, we
obtain directly Z1 � 1 from the Hamiltonian and the defi-
nition of partition function. Note that W1�G0� is the proba-
bility of the subgraph G0, if the graph is generated
randomly by making every edge a member of the subgraph
with probability p.

This allows for a calculation of the partition function
Zq for any q > 0 in the following way. Let Pq�c� the
probability to have c connected components in a sub-
graph generated according to weight Wq. Then we have
by definition

Pq�c� 

1

Zq

X

G0	G

Wq�G0��Nc�G0�;c

�
1

Zq

X

G0	G

W1�G0�qNc�G0��Nc�G0�;c

�
qc

Zq

X

G0	G

W1�G0��Nc�G0�;c �
qc

Zq
Z1P1�c�

�
qc

Zq
P1�c�: (2)

Hence, we get

Zq � qc
P1�c�
Pq�c�

: (3)

This means, by measuring the probability distributions of
the number of connected components for random sub-
graphs (q � 1) and for the target value q, we can obtain
Zq. Equation (3) holds for all values of c simultaneously
[24]. Therefore, by comparison of the full distributions,
one has a means to determine Zq with very high precision.

Equation (3) might be useful for analytical calculations,
but for most interesting graphs G, the distributions cannot
be obtained in this way. Hence, one uses numerical simu-
lations to obtain the distributions P1�c� and Pq�c�. In prac-
tice, one can generate random subgraphs directly accord-
ing to W1, as explained above, and according to Wq using
the very efficient cluster algorithm of Chayes and Machta
[23]. This algorithm allows for simulation for arbitrary
values of q, similar to other approaches [21,25,26].

Nevertheless, for large values of q and finite statistics,
P1�c� and Pq�c� will not overlap, because deviations from
the typical value are exponentially suppressed. In this case
one has to study intermediate values q1; . . . ; qk 2 �1; q�,
calculate each time Pqi�c� and Zqi . This allows us to extend
P1�c� stepwise [27,28] for larger values of c, until P1�c�
and Pq�c� have sufficient overlap. In principle, it is a bit
ugly that one has to perform simulations at several values
of qi, but on the other hand, one gets the partition function
for all considered values, which will be useful in the
following. Note that for the WL algorithm, one long run
is also sufficient only in theory. In practice, if the system
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size is larger than tiny, one has to divide the energy range
into intervals, perform independent runs for each interval,
and match the results of the different runs as well. In any
case, this is no problem for either method, because it can be
done automatically by a program, no matter how many
intervals have to be matched. The real advantage of the
present approach is that it works for all values of q > 0,
since it does not rely on flips of spins. On the other hand,
one must perform simulations for different values of the
temperature.

To test the new approach, we now apply it to the two-
dimensional Ising model (q � 2), where exact results
are available for finite system sizes [29]. In Fig. 1, the
Gibbs free energy per spin F=N 
 � T

N lnZq is shown in
the Ising representation (i.e., for the Hamiltonian H �

�
P

�i;j��2�
i;
j
� 1�). The data of the simulation and the

analytical result are given for a large system size N �
1000 1000. Thus, k � 110 different values qi are nec-
essary for measuring P�c� over the desired range.
Equilibration of the cluster MC simulation is determined
by monitoring the number of connected components and
the number of edges for two simulations, one starting with
a full, one with an empty subgraph. Equilibration is as-
sumed when the values for the different starting conditions
agree within the range of fluctuations. Because of the
global update nature of the Chayes-Machta algorithm,
this is typically the case for a few Monte Carlo sweeps.
Hence, for each value of qi, 5 103 steps were sufficient
to obtain a high accuracy, as shown in the inset of Fig. 1.

Since the aim is to determine qc, the new approach is
further tested by applying it to the two-dimensional Potts
model, where qc � 4 is known. In Fig. 2, the Gibbs free
energy per spin is shown for values in the range 3 � q � 5.
Because of the large system size, a total of k � 261 differ-
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ent values for q 2 �1; 5� is necessary. For q > 4 a kink at
the transition temperatures is visible, as expected. One can
calculate derivatives of the free energy analytically from
Eq. (1), which allows one to express the mean energy by
the average number of edges, and the specific heat by the
fluctuations of the number of edges [30,22], which are
available directly from the simulation. The upper inset of
Fig. 2 shows the average number hNbi of edges as a
function of temperature. One observes that the derivative
becomes stronger at the phase transition with growing
value of q, almost infinite for q > 4, rounded only by
finite-size effects, again showing the first-order nature of
the transition.

One can determine qc even more precisely by consider-
ing the distribution of the number of edges [19,21,31],
see lower inset of Fig. 2. The distributions are obtained
by performing several long simulations for T 2 �0:906;
0:907� or T 2 �0:9100; 0:9105�, exhibiting a total of more
than 2107 MC sweeps for each value of q, and combin-
ing the results from different temperatures using the multi-
histogram approach [32], see also Ref. [10]. For a first-
order transition, one expects [31,33] at T � Tc�L� a two-
peak structure such that the ratio between maxima and
minimum increases with system size. For a second-order
transition, the ratio stays constant, possibly one. For q �
4:05 a two-peak structure is visible, while for q � 4:00 not.
For smaller sizes L � 100 (not shown in the figure), no
two-peak structure was found in both cases. This con-
firms within the given numerical accuracy the known re-
sult qc � 4.

For three dimensions, the situation is less clear and no
exact analytic results are available. Avalue of 2<qc�3�<3
seems likely, see analytical work [16–18] and simulations
of moderate-size systems [19–21]. In the range where the
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FIG. 2. Free energy per spin of the two-dimensional Potts
model (3 � q � 5) for system size L � 1000. The upper inset
displays the average number of edges Nb as a function of T for
q � 3, 4, and 5. The lower inset shows the distribution of the
number of edges at the temperatures T�q � 4:00� � 0:910289
and T�q � 4:05� � 0:906865.
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transition is first order, the transition seems to be weak,
making a direct numerical treatment difficult. This is con-
firmed by the results for the free energy calculated using
the present approach for N � 1003, see Fig. 3. The data is
obtained by combining the results for k � 212 different
values qi 2 �1; 3�. No clear kink in any of the functions is
visible. Thus, to obtain a precise estimate for qc, one has to
study again the number of edges. The average, shown in
the inset of Fig. 3, allows us to see the transition point well,
but it is still difficult to infer the order of the transition
because of finite-size rounding of the curves. The full
distributions close to the phase transition are presented in
Fig. 4. The distributions are obtained again by performing
simulations for several temperatures close to Tc�L; q�, for
each value of q more than 2 106 MC sweeps, and
combining the data using the multihistogram approach
[32]. For q � 2:6, 2.5 one can see a clear double-peak
structure, while for q � 2:4 the distribution has only a
faint double-peak structure. Just one peak is present for
q � 2:3. For smaller sizes N � 203 (not shown), no two-
peak structure was found here for q � 2:5, and only a faint
two-peak function for q � 2:6. This allows us to conclude
qc�d � 3� � 2:35�5� from the present results, but one can-
not exclude an even lower value of qc.

This result is smaller than the result qc � 2:620�5�
obtained by Gliozzi [21]. The deviation is probably due
to the fact that in that work much smaller system sizes N �
143 where used, which shifts the value of qc up, because
slightly above qc the two-peak structure of P�Nb� becomes
visible only for large sizes. The result qc � 2:45�10� ob-
tained by Lee and Kosterlitz [19] is compatible with our
result, although is even less reliable since small sizes were
used and data obtained at q � 3 was extrapolated to values
q 2 �2:7; 3�. Barkema and de Boer studied [20] a model
with integer q, but mimicking the behavior of any q > 0,
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temperature T for system size L � 100. The arrow indicates
the phase transition for q � 3. The inset shows the average
number of edges Nb as a function of T for q � 2:1, 2.4, and 2.7.
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and got qc � 2:21. The results of analytical studies are
scattered around the result obtained here: Kogut and
Sinclair found [17] qc � 2:55 in a 1=q expansion,
Nienhuis et al. obtained [16] qc � 2:2 using a real-space
renormalization approach, while Grollau et al. got [18]
qc � 2:15 within a Ornstein-Zernicke approximation.

To summarize, we have introduced a new approach to
calculate numerically the partition function of a large class
of systems. We present the application to the q-state Potts
models for arbitrary values q > 0. Using a combination
with a fast cluster algorithm we can treat large system
sizes. We evaluate the method by performing a comparison
with exact analytic results for two-dimensional Ising mod-
els of size N � 10002, and find a very good agreement. For
the d � 2 Potts model of the same size, we confirm the
analytically obtained critical value qc � 4. For the three-
dimensional Potts model, due to the weakness of the first-
order transition, it is hard to infer qc from the data (size
N � 1003) for the free energy. From the analysis of the
distribution of the number of edges in the generated sub-
graphs, we conclude qc � 2:35�5�.

As already mentioned, this approach to obtain the free
energy can be applied beyond the standard q-state ferro-
magnetic Potts model, e.g., for random or diluted ferro-
magnets, other lattice types, and/or higher dimensions, and
even arbitrary graphs. The method should work in principle
also for frustrated systems, but here the efficient generation
of the subgraphs remains an open problem.
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