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Detecting Vacuum Entanglement in a Linear Ion Trap
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We propose and study a method for detecting ground-state entanglement in a chain of trapped ions. We
show that the entanglement between single ions or groups of ions can be swapped to the internal levels of
two ions by sending laser pulses that couple the internal and motional degrees of freedom. This allows us
to entangle two ions without actually performing gate operations. A proof of principle of the effect can be
realized with two trapped ions and is feasible with current technology.
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FIG. 1. Scheme for detecting ground-state entanglement: the
entanglement between two groups of ions is swapped to the
internal level of ions A and B by sending separate laser pulses
that induce an interaction between the internal levels and the
position of each ion.
A remarkable phenomenon that appears naturally in
quantum field theory is that the ground state (vacuum) is
entangled and that observables in two separated regions
can be entangled. Recent studies in quantum information
theory have taught us that entanglement is a physical
property which can be exchanged between systems or
used in quantum processes such as quantum communica-
tion, teleportation, and quantum cryptography [1]. This
suggests that vacuum entanglement as well could be de-
tected and used in quantum processes. There have been
several studies of vacuum entanglement in field theory
[2,3], as well as in other systems [4–6], but none have
proposed a way to observe vacuum entanglement in a
realistic experiment. The main purpose of this Letter is to
suggest a realistic physical implementation to observe this
phenomenon.

A gedanken experiment that allows the observation of
vacuum entanglement in field theory has been suggested
[3], which utilizes two basic ingredients of relativistic field
theory and quantum information: the presence of a causal
structure, and the nonincrease of entanglement under local
operations; operations performed at two causally discon-
nected regions do not increase the entanglement between
these regions. Consider two atoms, A and B, which locally
interact with the field and with one another through the
long range field interaction. The interaction with the field
can entangle A and B either via the exchange of propagat-
ing quanta or by transporting vacuum entanglement into
the atoms. Using the fields’ built-in causal structure, one
can eliminate the former unwanted process, by demanding
that cT < L, where T is the interaction time and L is the
separation between the atoms. Vacuum entanglement can
then be ‘‘swapped’’ to the atoms’ internal levels, which can
then be used for detecting vacuum entanglement. However,
this method requires precise control of the atom-field
interaction, which, in the case of an electromagnetic field,
renders the experiment highly unrealistic. Nevertheless,
experimentalists in atomic physics are taming their sys-
tems at the quantum level and can test quantum effects with
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the required precision and control for this type of
experiment.

In the following, we propose and analyze the possibility
of observing vacuum entanglement with trapped ions
(Fig. 1). We consider a system of trapped ions that are
brought to equilibrium in a linear chain configuration. The
ground state (vacuum) of the system is an entangled state
of the different motional modes of the chain and manifests
entanglement between single ions or distant groups of ions.
In order to detect vacuum entanglement, we consider pro-
cesses wherein the external motional degrees of freedom
are mapped to the internal ions states, which are then used
for entanglement detection. The internal levels are well
isolated, they can be temporarily coupled ‘‘on demand’’ to
the phonon modes by sending finite duration laser pulses,
and finally can be measured with nearly perfect precision.
In analogy with the field-theoretical case, the interaction
must be limited to a duration shorter than the time it takes
for perturbations to propagate between the two (probe) ions
along the chain. We comment that in the case of ion chains,
this process is interesting on its own, because one can
entangle the internal levels of two ions without actually
4-1  2005 The American Physical Society
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doing gates [7]. The most spectacular manifestation of the
idea would involve a chain with many ions. However, a
proof of principle can be attained with just two trapped
ions and is feasible using current technology. We study
both cases and analyze the latter in detail.

We now consider a system of N ions trapped in a linear
Paul trap at very low temperature [8]. The Hamiltonian
describing the ions’ motion relative to their equilibrium
positions and internal levels is H0 �

1
2!z��

�A�
z � ��B�

z � �P
na

y
nan. Here !z is the internal level energy gap of the

two relevant (probe) ions A and B, and n are the phonon
normal-mode frequencies, with corresponding creation
(annihilation) operators ayn (an). Typically, !z is in the
optical region and n �MHz.

We begin by analyzing the simplest case with just two
trapped ions. The vacuum state is then defined as the
ground state of the normal modes of the system, i.e., a
product state of the collective and breading modes j0ci and
j0bi. In terms of the local single oscillator states jniA;B, the
vacuum is an entangled two mode squeezed state [9]

jvaci � j0cij0bi �
�������������������
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The local number states are the single ion energy eigen-
states obtained when the displacement of the other ion is
set to zero. We get e	� �
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quencies of the collective and breathing modes. Since
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p
, we get � � 0:5189, and the von Neumann

entanglement [10] of the squeezed state is E����
1=2�log2���1=2�	��	1=2�log2��	1=2��0:136 e-bit.

In order to transfer vacuum entanglement into the ion
internal states, we use laser pulses to couple the internal
and motional states of atoms A and B. Close to resonance,
with !laser  !z, the interaction terms for the kth ion (in
the Lamb-Dicke limit) is given by [11]

H�k�
int � ��t��e	i���k�

� � ei���k�
	 �xk; (2)

where �� are the raising and lowering operators, � is the
laser phase, and xk is the displacement of the kth ion.
Above we have applied the rotating wave approximation
with respect to the internal levels but not (as is usually
done) to position operators. That is because the duration T
of the laser pulses satisfies 1=!z � T � 1=0. The upper
bound on T follows from the requirement that perturba-
tions do not propagate between the ions during the
interaction.

Using the available interaction (2), we would like to
swap the motional entanglement into the internal ion
levels which are initially prepared in a nonentangled state
j#iAj#iB. The smallness of e	� implies that the entangle-
ment arises mostly from the first two terms of (1). We
therefore seek a procedure, of typical duration T � 1=0,
that maps

jvacij #ij #i ! j�i
j #ij #i � e	�j "ij "i�; (3)
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where � is the final state of the ions. The interaction
then acts separately on each ion and swaps the lowest
two motional states j0i and j1i to the two ion internal
states. In this 4� 4 subspace the map is expected to
approximate the unitary swap transformation
ei�=4�~�x�x�~�y�y�, where ~�x � j0ih1j � j1ih0j and ~�y �
ij1ih0j 	 ij0ih1j act on the number states. (We have
ignored a trivial ~�z�z term.) We note that ~�x and ~�y can
be approximated by x and p, respectively. Based on this
intuition we proceed with the following construction. We
consider the following sequence of unitary operations,
Us � V�#1�W��1�V�#2�W��2� � � �V�#n�W��n�, where

V�#� � ei#�xx; W��� � ei��yp; (4)

to be performed on each ion separately by sending a
sequence of laser pulses. The V�#� evolution can be ob-
tained by sending a laser pulse of duration T and phase
� � 0, such that T � 1=0 and

R
��t�dt � #. In order to

generate a W��� evolution, we set the laser phase to � �
�=2 and allow the system to evolve freely for a short time
interval dt � & in between a pair of pulses. Denoting
V0��� � exp�i��yx�, we obtain

V 0
t�&�	�0�V 0

t�0��
0� � e	if�

0�x
x��p&=m���O�2&2�gei�
0�xx

� e	i��
0=m�
�xp&��1=2�&�0� �O�2&2�;

(5)

where we have used the approximation x�&� �
x�0� � p�0�&=m�O�2&2�. (Alternatively, in the
Schrödinger picture we notice that Vye	iHphonontV shifts
the kinetic term as p2 ! �p� �0�y�

2 � p2 � 2�0�yp�

�02.) Taking the limit 2&2 � 1, and maintaining � �
�0&=m � O�1�, we obtain the required effective coupling
to p. Therefore, the sequence of n pairs of V�#�W���
pulses can be generated by 3n ordinary pulses with n
free evolution intermediate intervals of total duration
dt � n&. By optimizing the entanglement of formation
[12], EF�#i; �i�, over the free parameters #i and �i the
transformation (3), where � is the final motional state
of the ions, can be generated with high efficiency. This
transformation swaps the first two terms in Eq. (1) to the
ion’s internal level states. After a sequence of three VW
pulses, the entanglement of formation of the final internal
level state contains 97% of the computed ground-state
entanglement. The optimal sequence is in this case
V�0:31�W�0:38�V�0:50�W�0:39�V�0:53�W�0:16�. (With
two pulses we get at most 93%.) Expressed in the relevant
4� 4 subspace, this unitary operation has indeed a a
structure which closely resembles a swap. Testing the
purity of the final state *AB, we find tr*2AB � 0:997. The
final density matrix of the internal levels is depicted in
Fig. 2. The measurement precision for the density matrix in
recent experiments is about 1% [13] and hence sufficient
for observing the entanglement of the final state.

We comment that an alternative to the above approach
could be to separate the two ions by moving them apart.
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FIG. 3 (color online). Logarithmic negativity between two
groups consisting of 1, 3, and 5 ions, as a function of their
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FIG. 2 (color online). Histogram of the final density matrix of
the internal levels of ions A and B. The entanglement of
formation of this state accounts for 97% of the computed initial
ground-state motional entanglement.
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This effectively ‘‘turns off’’ the interaction between them,
allowing for a longer duration of the detection process. It is
then easier to generate the desired swap using continuous
on-resonance laser pulses [14]. In order not to affect the
entanglement between the ions, the separation has to be
fast compared with the propagation time scale 1=0. This
can be done by increasing the potential between the ions.
The possibility of changing the local potential and moving
ions, without effecting the internal ion states, has been
recently demonstrated experimentally [15,16].

We next turn to the more general case of entanglement in
a chain with N ions. The state of two subgroups, ~A and ~B,
each consisting of nA and nB ions, separated by ls ions, is
described by a reduced Gaussian density matrix * ~A ~B �

trl ~A; ~B�jvacihvacj�. The entanglement between the groups
(Fig. 3) can be characterized by the negativity [17,18]. It
vanishes for separation larger than one. However, as the
group size increases, it persists for larger separations.
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We examine the possibility of detecting the entangle-
ment by coupling to the internal levels of two ions, A and
B, for a time duration T. We can check that as long as T <
1=0, the interaction with respect to two complementary
parts of the chain can be regarded as local. This is seen by
noticing that the evolution operator, U�T�, can be factor-
ized in the interaction picture as

U � UA �UB � e
	i=2

R
dtdt0f�t;t0��AB; (6)

where Uk act on A or B, �AB � �k�e	i��
�k�
� � ei���k�

	 �,
and f�t	 t0� � 
xA�t�; xB�t0��. The last term above, involv-
ing �AB, is a unitary operator that can increase entangle-
ment ‘‘nonlocally.’’ However, as can be seen in Fig. 4, the
noncommutativity described by f�t	 t0� vanishes rapidly,
and for sufficiently short interaction time, or large enough
spatial separation, this noncausal effect is suppressed.

We begin with the initial ground state jvacij#ij#i and
proceed to evaluate the reduced state *AB�T� �
tr
U�T�jIihIjUy�T�� perturbatively. Assuming that the in-
tensity of the laser pulses is sufficiently weak, we expand
U�T� in a power series, and to lowest order in � we obtain
*AB �

kXABk2 0 0 	h0jXABi
0 kEAk2 hEBjEAi 0
0 hEAjEBi kEBk

2 0
	hXABj0i 0 0 1	 kEAk2 	 kEBk2

0
BBB@

1
CCCA: (7)
Here jEAi � XAjvaci, jXABi � XAXBjvaci, Xk �R
dt��t�ei/txk�t� (k � A;B), and / is the detuning. Using

the Peres-Horodecki separability criterion, it then follows
that *AB�T� is entangled if and only if N �*AB� 
jh0jXABij 	 kEAkkEBk> 0, where N �*AB� is the nega-
tivity. This condition can be understood physically as the
requirement that the virtual off-shell single phonon ex-
change process (described by XAB) is sufficiently large to
overcome the decoherence effects due to local phonon
emission (described by the EA;B terms).

To verify that the above condition amounts to a detection
of vacuum entanglement, rather than a direct interaction
due to the nonlocal correction in Eq. (3), we have repeated
the computation, using the same initial state jIi, but with a
modified truncated evolution. In the latter truncated case,
we ‘‘disconnected’’ the chain by eliminating the interac-
tion between ions at the different halves, n > N=2 and n <
N=2, of the chain. This can be easily achieved by replacing
the potential term in the free phonon Hamiltonian byP
xiGijxk !

P
xiG

T
ijxk, where GT � GA �GB is block

diagonal. This truncated evolution does not change the
entanglement between the two halves of the chain since
an exact separability holds in Eq. (3) (i.e., f�t	 t0� � 0).
The ratio 3 � jh0jXABij=kEAkkEBk is plotted in Fig. 5 as a
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FIG. 4 (color online). (a) Classical propagation of a perturba-
tion originating at the center of the chain. (b) The commutation
relation between the displacement operators of the nth ion and
the central ion in a chain of 80 trapped ions, at different time
slices.
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function of the detuning /, forN � 20 ions. In Fig. 5(a) the
probe ions are situated at sites lA � 6 and lB � 15, and we
can see that A and B become entangled (3> 1) in a range
of frequencies. Since small violations of causality are
expected in the nontruncated model, one could have an-
ticipated that the nontruncated case should give rise to
more entanglement. On the contrary, we see that it is the
truncated case which gives rise to more entanglement. To
understand this consider first Fig. 5(b), in which nearest
neighbor ions lA;B � 10; 11 have been used as probes. We
find that the truncated and nontruncated models precisely
agree for sufficiently small T � 1=0. In this case, since
there is preexisting local entanglement between the close
ions, the probe can detect entanglement in an arbitrarily
short time, and the truncated interaction has here no effect
because evolution is not required. On the other hand, in the
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FIG. 5 (color online). The ratio 3 for ions in a chain of N � 20
ions as a function of the detuning /. (a) The ion probes are
located at l � 6; 15 and T � 0:8 (in units wherein 0 � 1).
(b) l � 10; 11 and T � 0:05. The range 3> 1 signifies entan-
glement.
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case of separated ions, propagation effects ‘‘communi-
cate’’ between the probes and ions closer to the center of
the trap which carry the most entanglement. This suggests
that the larger entanglement in the truncated model is due
to perfect wave reflection at the boundary between the
regions.

In conclusion, we have proposed an efficient method for
detecting vacuum entanglement by mapping motional
states of trapped ions or groups of ions to the ions’ internal
levels. It is remarkable that this phenomenon, which can be
considered as purely fundamental, may also help to realize
quantum information tasks. Further investigations will de-
termine whether vacuum entanglement can be used to
entangle internal degrees of freedom in a fast way, and to
produce spin squeezing, which would be of practical in-
terest in, for example, atomic clocks [19].
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