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Coin tossing is a cryptographic task in which two parties who do not trust each other aim to generate a
common random bit. Using classical communication this is impossible, but nontrivial coin tossing is
possible using quantum communication. Here we consider the case when the parties do not want to toss a
single coin, but many. This is called bit-string generation. We report the experimental generation of strings
of coins which are provably more random than achievable using classical communication. The experiment
is based on the ‘‘plug and play’’ scheme developed for quantum cryptography, and therefore well suited
for long distance quantum communication.
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Coin tossing is a cryptographic task, introduced by Blum
[1], in which two parties who do not trust each another aim
to generate a common random bit. Coin tossing is an
important primitive that can be used in the design of other
two-party protocols such as mental poker and mail certif-
ication and it could even form the basis of a scheme for bit
commitment that is computationally secure against quan-
tum attacks [2]. Classically, coin tossing is impossible
without computational assumptions: at least one of the
parties can in principle always cheat and fix the outcome.
Using quantum communication, however, nontrivial coin
tossing is possible [3–7]. In many applications, the parties
do not want to generate a single coin, but many. This is
called bit-string generation [8–10]. Here we report on an
experimental implementation of bit-string generation
based on the ‘‘plug and play’’ scheme developed for quan-
tum key distribution in optical fibers at telecommunication
wavelengths [11]. Using the theoretical analysis of [10] we
are able to show that the bit strings generated in our
experiment achieve a level of randomness impossible clas-
sically. This is the first demonstration of a fundamental
new concept: namely, the possibility of generating random
coins with an adversary who is limited only by the laws of
physics.

The present work focuses on bit-string generation rather
than the tossing of a single coin for two reasons. First it is
shown in [10] that in principle arbitrarily high levels of
randomness per bit can be obtained for bit-string genera-
tion whereas this is not the case for coin tossing [12,13].
Hence bit-string generation is more promising from the
point of view of applications. Second, present experimen-
tal limitations (mainly detector noise and inefficiency)
seem to preclude tossing a single coin with a level of
randomness higher than what is possible classically. This
difficulty is illustrated by another experiment which re-
cently realized some aspects of coin tossing [14], but for
which it was impossible to prove that a level of randomness
impossible classically was achieved.
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We begin by reviewing security conditions for the gen-
eration of n random bits. The outcome of the protocol is
either a string of bits ~x 2 f0; 1gn or one of the parties
aborts, in which case we write ~x �? . The protocol is
correct if, when both parties are honest, the probability
of aborting is small and all the coins are fair.
Mathematically we express this as

8 ~c2f0;1gn; P� ~x� ~c�� �1	�n�=2n; P� ~x�?���n:

(1)

It is necessary to include the parameter �n because of
experimental imperfections which induce a nonzero proba-
bility of the protocol aborting even if both parties are
honest. In the protocol we use, �n decreases to zero ex-
ponentially fast with n and can be neglected.

We shall use two security conditions. The first, called the
‘‘average bias’’, describes the degree of randomness of
individual bits of the string. Formally we define the upper
bound 	A�B� on the average bias when Alice (Bob) is
dishonest and the other party is honest as

8SA8 ~c2f0;1gn;
1

n

Xn
i�1

PSAHB�xi�ci�

1

2
�	A;

8SB8 ~c2f0;1gn;
1

n

Xn
i�1

PHASB�xi�ci�

1

2
�	B;

(2)

where we denote a general strategy of Alice (Bob) by SA
(SB), and the honest strategy defined by the protocol as HA
(HB). Classically, when �n � 0, one has 	A � 	B � 1=2
[10]. (When �n � 0 the classical bound becomes 	A �
	B � 1=2	 2�n.)

The second security condition measures the degree of
randomness of the string taken as a whole. We defineHA�B�

as the entropy of the string if Alice (Bob) is dishonest and
the other party is honest. In [10], bounds on the entropy are
derived for our protocol assuming general cheating.
However the corresponding classical bound is not known,
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although it is conjectured in [10] to be of the form HA �
HB 
 n� o�n�. We refer to [10] for a more detailed dis-
cussion of security conditions and for formal definitions of
HA�B�.

The protocol we shall use, inspired by that of [8,10] is as
follows. Choose a security parameter 0< �< 1. (1) For
i � 1 to n. (2) Alice chooses a random bit ai. If ai � 0, she
prepares a coherent state of the electromagnetic field with
amplitude �:  0 � j�i. If ai � 1, she prepares a coherent
state with amplitude 	�:  1 � j 	 �i. She sends the
coherent state  ai to Bob. After receiving the quantum
state from Alice, Bob chooses a random bit bi. Bob tells
Alice the value of bi. (3) After learning the value of bi,
Alice reveals the value of ai to Bob. (4) Bob now verifies
whether the state Alice sent him is indeed the coherent
state j�	1�ai�i. He does this by using a local oscillator
(LO) to carry out the displacement D�	�	1�ai��. If Alice
was honest, the displaced state should be the vacuum state.
Bob checks that this is the case by sending the state onto a
single photon detector. If the detector clicks, Bob sets ki �
1. If the detector does not click, Bob sets ki � 0. (5) Next i.
(6) If 1

n

P
iki > �, Bob aborts. Otherwise the output of the

protocol is the bit string xi � �ai � bi�mod2.
When Bob is dishonest his best strategy is to measure the

state sent to him by Alice as soon as he receives it [i.e.,
before carrying out step (3) above]. One easily shows, see
[10], that

	B 

sin�
2
; where cos� � jh 0j 1ij � e	2j�j2 : (3)

If Alice is dishonest she may not send Bob the state  ai
but an arbitrary state �. In general she may prepare an
entangled state, keeping half of it and sending the other
half to Bob. Furthermore, she may correlate and even
entangle her strategy over different runs. In [10], however,
it is shown that strategies correlated over different runs
cannot help Alice for large n. A bound on 	A is proven that
depends on the average value of the fidelity fi �
h ai j�j aii, as estimated by Bob. Since the probability
that Bob’s detector clicks (assuming his detector is perfect)
LD(1,55µm) C
C1

Φ1 Att1

Dcl
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FIG. 1. Optical setup. LD: laser diode; Ci (i � 1, 2, 3): coupler;
classical detector.
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is related to the fidelity by P�ki � 1� � 1	 fi, the result
of [10] then implies that, assuming large n, the bias if Alice
is dishonest is bounded by 	A 
 F ���, where F �x� ���

x
p��
2

p
sin2�

� x
sin2� . Below we show how this relation must be

modified to take into account imperfections in Bob’s mea-
suring apparatus.

Note that due to such imperfections, Bob’s detector may
click even if Alice is honest. Alice and Bob should choose
� such that it is larger than the expected number of clicks if
both parties are honest. When this is the case, the proba-
bility �n that the protocol aborts if both parties are honest
decreases exponentially fast to zero and the protocol is
correct.

Our experimental setup, depicted in Fig. 1, is based on
the plug and play system developed for long distance
quantum key distribution [11]. The advantage of the plug
and play system is that it constitutes an all-fiber (standard
SMF-28), automatically balanced interferometer, and
hence is well suited to long distance quantum communi-
cation. However the plug and play system has a number of
specific features which must be carefully taken into
account.

Bob to Alice and Bob’s cheating.—Each round of the
protocol begins with Bob producing a short (20 ns) intense
(25 mW) laser pulse at � � 1:55 �m. The pulse is split in
two by the 50=50 coupler C1. The two pulses acquire a
relative time delay of 100 ns and then impinge with or-
thogonal polarization on a polarizing beam splitter (PBS)
whereupon they are sent to Alice. Between C1 and the PBS,
along the long path, are an attenuator, a 99=1 coupler C2,
and a phase modulator. The role of these elements will be
explained later. The relative attenuation of the two pulses is
A ’ 45 dB. The first pulse to reach Alice is intense and
contains N0 ’ 109 photons. This pulse will play the role of
LO. The second pulse to reach Alice is attenuated and
contains AN0 photons. The second pulse will play the
role of signal.

Upon receiving the pulses, Alice measures the intensity
of the signal pulse (using the 80=20 coupler C3 and a
classical detector Dcl) and attenuates both pulses. The
C2

PBS

C3
Att2 Φ2

FM

Dcl

Alice

Att: attenuator, �: phase modulator; FM: Faraday mirror; Dcl:
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FIG. 2. Optical setup equivalent to Bob’s measurement, in-
cluding its imperfections.
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two pulses are reflected by the Faraday mirror and travel
back to Bob. The total attenuation at Alice’s site is A0 ’
50 dB. Thus the two pulses now contain A0N0 and AA0N0

photons, respectively. In particular the signal pulse now
contains only a few photons (AA0N0 � j�j2 � O�1�).
Alice also adds a phase !A � ai" to the signal pulse,
thereby encoding the value of her bit ai.

The fact that Bob provides Alice with the signal state
seems to provide him with some simple cheating strategies.
For instance he could provide Alice with a signal state that
is squeezed in phase in order to decrease the overlap
between j 0i and j 1i. This apparently allows him to
discriminate much better j 0i from j 1i and hence the
value of ai. The role of the attenuation is to prevent this
kind of cheating. Indeed under strong attenuation any
quantum state tends towards a mixture of coherent states.

To show this we describe the state by its generalized
Wigner function W�q; p; s�. We recall that W�s � 	1� is
the Q function which is always positive, W�s � 0� is the
Wigner function, andW�s � �1� is the P function. If the P
function is positive, then the state is a mixture of coherent
states. Under attenuation by A we have (see [15]):
Wout�q; p; s� � 1

AW
in� q���

A
p ; p���

A
p ; s�A	1

A � which implies that

Wout�s � �1	 2�A� is positive. This expresses the fact
that for A! 0 one tends towards a positive P function.
This result can be made more quantitative by supposing
that after attenuation we add a small amount of Gaussian
noise with mean number of chaotic photons n. This affects
the W function as Wout�q; p; s� � Win�q; p; s	 2n�. Thus
attenuation followed by addition of chaotic photons yields
the transformation Wout�q; p; s� � 1

AW
in� q���

A
p ; p���

A
p ; s	2n�A	1

A �

and, in particular, if n � A we have Wout�q; p; s � �1� �
1
AW

in� q���
A

p ; p���
A

p ; s � 	1�, i.e., the output P function is posi-

tive since it is given in terms of the input Q function. Thus
after strong attenuation, say A � 10	3, a quantum state is
very well approximated by a mixture of coherent states
since a very small amount of Gaussian noise with mean
number of chaotic photons n � 10	3 transforms the state
into a mixture of coherent states.

Another simple cheating strategy is for Bob to increase
the intensity of the signal state since it is then much easier
for him to estimate the phase !A. The role of the classical
intensity measurement is to ensure that the signal state
Alice sends back is not too intense. In fact it is impossible
for Bob to exploit the fact that he provides Alice with the
light pulse which will become the signal state, since by
measuring the intensity of the pulse Bob sends her and then
attenuating it, Alice ensures that she sends back to Bob a
coherent state of known intensity.

Note that the classical intensity measurement of Alice
will be affected by noise because AN0 is close to the
sensitivity limit of Alice’s detector. We circumvent this
technical problem by letting Alice carry out statistical tests
on the n intensity measurements (one for each round of the
protocol). More precisely she checks whether the distribu-
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tion of measured intensities is consistent with the Gaussian
distribution she expects from instrumental noise. If it is she
has a precise estimate of j�j2, and hence of 	B through
Eq. (3). If it is not she aborts.

From Alice to Bob and Alice’s cheating.—Upon receiv-
ing the two pulses from Alice, Bob uses coupler C2 to
measure the intensity of the LO, attenuates it by A, and
adds a phase ei!B , with !B � ai". Note that by measuring
the intensity of the LO state provided by Alice and then
attenuating it, Bob ensures that the LO he uses is a coherent
state (or a mixture of coherent states) of known intensity
j(j2. (The argument is exactly the same as that given above
in the case of Alice.)

Let us consider the two states that interfere at coupler
C1. On the one hand there is the LO which as we have just
argued is a coherent state of known intensity j(j2. On the
other hand there is the signal state. The signal state travels
through the PBS where it gets attenuated by A0. It then
interferes with the LO at coupler C1. This coupler has
transmission and reflection coefficients T and R (both are
approximately 50%). Finally one of the outputs of the
coupler is sent to a single photon detector (id Quantique)
with efficiency +. In our experiment A0T � 4:3 dB and
+ � 10:5%. We can therefore model the whole of Bob’s
detection system by the scheme depicted in Fig. 2. It is
composed of the LO (a coherent state of amplitude (), the
signal state �, the attenuator A0, a beam splitter with
transmission, and reflection coefficients T and R. The
imperfect detector is modeled by an attenuation of +
followed by a perfect detector.

Let us denote by � the amplitude of the coherent state
that would give rise to destructive interference at the single
photon detector. It satisfies �

���������
A0T

p
� i(

����
R

p
� 0. When

ai � 0, the state Alice should send if she is honest is the
coherent state j�i. (If ai � 1 she should send the state j 	
�i; by using the phase modulator Bob can cancel this
phase.) But if Alice is dishonest she will send another state
j�i. We expand j�i in the basis of displaced Fock states
j�i � Da���

P
ncnjni where Da��� is the displacement

operator acting on mode a, ie., Da���aDa���
y � a	 �,

and jni � �ay�n=
�����
n!

p
j0i are the Fock states. The fidelity of

the state sent by Alice is thus f � jh�j�ij2 � jc0j
2.

We model the effect of the attenuation by the trans-
formation a!

������
A0

p
a0 �

���������������
1	 A0

p
e1 where e1 is a mode

of the environment; the effect of the BS by the transforma-
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FIG. 3. Measured bounds on average bias and on entropy of bit
strings for different values of the average photon number �2.
Open squares: bounds on 	B obtained using Eq. (3); open circles:
bounds on 	A obtained using Eq. (5); filled squares: bounds on
	A � 	B. Classically the sum is always greater than 1=2. The bit
strings are clearly more random than is allowed by the best
classical protocol. The same expressions which give bounds on
	A, 	B also give lower bounds on the entropies HA�B� of the bit
string if Alice (Bob) is dishonest (see [10]). Filled triangles:
bounds on the entropy per bit �HA �HB�=n. It is conjectured in
[10] that for any classical protocol �HA �HB�=n is bounded by 1
for large n. The experimental points are clearly above this
bound. The error bars for 	A � 	B and �HA �HB�=n describe
systematic errors arising from incorrect calibration of detector
efficiency + and incorrect estimation of �2. The plotted curves
are theoretical predictions based on the observed optical visibil-
ity of 96.5%. For 	B the curve is given by Eq. (3) and for 	A it is
given by Eq. (5) using the fact that, for small �2, ��	
�dark�=A0T+ ’ �1	 V��2=2.
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tions a0 !
����
T

p
d0 	 i
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R

p
c, b!

����
T

p
c	 i

����
R

p
d0; and the ef-

fect of the detector inefficiency by d0 !
����
+

p
d�

�������������
1	 +

p
e2

where e2 is another mode of the environment (the modes a,
a0, b, c, d0, d are all described in the figure). One then finds
that the state just before entering the single photon detector
is Dc�.�

P
n
cn����
n!

p �
������������
A0T+

p
dy � i

���������
A0R

p
cy �

���������������
1	 A0

p
ey1 ��������������������������

�1	 +�TA0

p
ey2 �

nj0i where . � (
����
T

p
� i�

���������
A0R

p
. From

this one easily computes that the probability that the de-
tector does not register a single click is

P�no click� �
X1
n�0

jcnj2�1	 A0T+�n: (4)

The probability of registering a click is thus bounded by
P�click� � �1	 jc0j

2�A0T+. Thus the number of clicks on
Bob’s detector divided by A0T+ gives a bound on the
fidelity jc0j2.

A final inefficiency that must be taken into account is
that Bob’s detector will have a nonzero dark count rate
�dark � 9� 10	4. Putting all this together we deduce the
bound on the average bias if Alice is dishonest:
05050
	A 
 F

�
�	 �dark

A0T+

�
(5)

Note that this bound on 	A is given entirely by parameters
which can be measured by Bob.

Using this protocol, and taking into account experimen-
tal imperfections as described below, a typical run of our
experiment generates 107 coins. Some results for different
values of j�j2 are presented in Fig. 3. For instance when
j�j2�0:03, we obtained 	A�	B�0:32�0:04, which is
significantly better than the classical bound 	A � 	B �
1=2.

An important property of this protocol and of its experi-
mental implementation is that we do not have to make any
hypothesis about the Hilbert space Alice or Bob use if they
are dishonest—for instance, it is not necessary to restrict
them to the single photon subspace—nor do we have to
make any hypothesis about the kind of technology they can
use if they are dishonest. Thus the randomness of the bit
string when one of the parties is dishonest is guaranteed by
the laws of physics.
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