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We compute the entropy of entanglement between the first N spins and the rest of the system in the
ground states of a general class of quantum spin chains. We show that under certain conditions the entropy
can be expressed in terms of averages over ensembles of random matrices. These averages can be
evaluated, allowing us to prove that at critical points the entropy grows like �log2N � ~� as N ! 1, where
� and ~� are determined explicitly. In an important class of systems, � is equal to one-third of the central
charge of an associated Virasoro algebra. Our expression for � therefore provides an explicit formula for
the central charge.
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Entanglement has recently come to be viewed as an
important physical resource for manipulating quantum
information. The problem of quantifying it is, however,
still poorly understood, especially when the entanglement
is shared between more than two systems. When the en-
tanglement of a pure state is shared between two parties,
i.e., in a bipartite system, Bennett et al. [1] have shown that
it is consistent to define it as the von Neumann entropy of
either of the two parts. We consider here the general class
of quantum spin chains arising from quadratic chains of
fermionic operators in their ground state. These systems
are partitioned into two contiguous subchains. If the
ground state is nondegenerate, this subdivision creates a
pure bipartite system; our main result is to calculate its
entanglement entropy by relating the problem to one in
random matrix theory.

As is well known, the systems we are studying exhibit
quantum phase transitions. These manifest themselves as
qualitative changes in the decay of correlations: algebraic
at a critical point and exponential decay away from it.
Entanglement plays a fundamental role in the quantum
phase transitions that occur in interacting lattice systems
at zero temperature [2–8]. Under these conditions the
system is in the ground state, which is also a pure state,
and any correlations must be a consequence of the fact the
ground state is entangled. It follows immediately that the
entanglement changes qualitatively at critical points.

In this context, Vidal et al. [3] studied the ground states
of a wide range of one-dimensional spin models partitioned
into two consecutive subchains. They observed numeri-
cally that, when the Hamiltonian undergoes a phase tran-
sition, the entanglement of formation of these bipartite
systems grows logarithmically with the size N of one of
the two parts. Jin and Korepin [4] then proved that the
entropy grows like 1

3 log2N in the XX model, for which the
Hamiltonian is

H� � �
�
2

XM�1

j�0

��xj�
x
j�1 � �yj�

y
j�1� �

XM�1

j�0

�zj; (1)
05=94(5)=050501(4)$23.00 05050
where �a denotes the Pauli matrices and a � x; y; z.
Recently, Korepin [5] and Calabrese and Cardy [6]
showed, using conformal-field-theoretic arguments devel-
oped by Holzhey et al. [9], that the logarithmic divergence
of the entanglement in one-dimensional systems is a gen-
eral consequence of the logarithmic growth of the entropy
with the size of the system at phase transitions. These argu-
ments determine the constant multiplying the leading-
order log2N term in the asymptotics to be one-third of
the central charge of the associated Virasoro algebra [10].

We show here that if a quantum spin-chain Hamiltonian
possesses certain symmetries, the entanglement can be
expressed as an average over an ensemble of random
matrices corresponding to one of the classical compact
groups equipped with Haar measure, i.e., one of the fol-
lowing groups: U�N�, Sp�2N�, and O��N�, where the
superscript � indicates the connected component of the
orthogonal group with determinant �1. From the point of
view of the entanglement entropy (and of spin-spin corre-
lations), quantum spin chains therefore divide into sym-
metry classes related to the classical compact groups. The
XX model turns out to be an example of a system with
U�N� symmetry. The averages that occur can be expressed
either as Toeplitz determinants (i.e., determinants of ma-
trices in which the elements are functions of the difference
between the row and column indices), in the case of U�N�,
or as determinants of specific combinations of Toeplitz and
Hankel matrices (i.e., matrices in which the elements are
functions of the sum of the row and column indices) for the
other compact groups. Asymptotic formulas for these de-
terminants then lead to general expressions for the leading-
order and next-to-leading-order terms in the asymptotics of
the entanglement in the limit as the total number of spins
tends to infinity and then as N ! 1.

We find that at a critical point the entanglement grows
logarithmically with N, in agreement with the conformal-
field-theoretic calculations. We derive a general formula
for the associated constant of proportionality. This is a
rational number, the numerator of which is shown to
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factorize into a universal part, related to symmetries of the
quantum Hamiltonian and which can be calculated from
the random-matrix averages, and a nonuniversal (i.e.,
Hamiltonian-specific) part, which we also evaluate. In the
unitary case, comparing with the results in [5,6,9] leads to
an explicit formula for the central charge. However, our
approach also extends to systems where the conformal-
field-theoretic results cannot be applied directly. These are
the systems related to the other compact groups. Further
details of our calculations and results may be found in [11].

The most general form of Hamiltonian related to quan-
tum spin chains is
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where � and � are real parameters, 0 
 � 
 1, the bjs are
Fermi oscillators, A is a Hermitian matrix, and B is an
antisymmetric matrix. We take periodic boundary condi-
tions, i.e., bM � b0. Without loss of generality, we will
consider only matrices A and B with real elements. The
Hamiltonian (2) can always be reexpressed in terms of the
Pauli spin matrices using the Jordan-Wigner transforma-
tion [11,12].

We will here be concerned with the entanglement be-
tween the first N oscillators and the rest of the chain when
the system is in the ground state jgi and as the length of
chain tends to infinity. We decompose the Hilbert space
into the direct product H � H P HQ, where H P is
generated by the first N sequential oscillators and HQ by
the remaining M� N. Our goal is to determine the asymp-
totic behavior for large N � M of the von Neumann
entropy EP � �Tr�Plog2�P, where �P � TrQ�PQ and
�PQ � jgihgj.

The first step involves determining the expectation val-
ues with respect to jgi of products of arbitrary numbers
of the operators
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From the invariance of the Hamiltonian (2) under the
transformation bj ��bj, it follows that hgjmljgi�0;
for the same reason, the expectation value of the product of
an odd number ofmjsmust be zero. The expectation values
hgjmjmkjgi can be deduced using the approach of Lieb
et al. [12]: hgjmjmkjgi � �jk � i�CM�jk, where the
correlation matrix CM has the block structure
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with
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the matrix TM is defined by
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 lj"lk; j; k � 0; . . . ;M� 1; (6)

and the vectors"k and  k are real and orthogonal and obey
the eigenvalue equations
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These vectors are related by
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The expectation values of the product of an even number of
mjs can then be computed using Wick’s theorem (see, for
example, [13]).

Following the calculation in [4], the formula for the
entropy of the subchain P that one obtains using these
expressions for the expectation values is then
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DN�(� � det�I(� S�, S is the real symmetric matrix
�TNT

t
N�

1=2, and TN is obtained from the matrix (6) by
removing the last M� N rows and columns. The contour
of integration c�"; �� depends on the parameters " and �
and includes the interval ��1; 1�; as " and � tend to zero
the contour approaches the interval ��1; 1�. This guaran-
tees that the branch points of e�1� "; (� lie outside the
contour of integration and thus that e�1� "; (� is analytic
inside c�"; ��. The eigenvalues of S must all lie in the
interval ��1; 1�, and this is the case for the various
Hamiltonians we consider [11].

We first specialize to cases where the Hamiltonian (2) is
invariant under translations. For example, the XX model
has this symmetry.

We denote �A � �A� 2I and �B � ��B. If H� is invari-
ant under translations of the lattice f0; 1; . . . ;M� 1g, then
the elements of the matrices �A and �B must depend only on
the difference between the row and column indices; i.e., �A
1-2
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and �B must be Toeplitz matrices. In addition, because of
the periodic boundary conditions, �A and �B must be cyclic.

Now, let a and b be two real functions on Z=MZ, even
and odd, respectively. The matrix elements of �A and �B can
be written as

�A jk � a�j� k� and �Bjk � b�j� k�: (11)

The complex exponentials

"kj �
exp�2%ikjM ������

M
p ; j; k � 0; . . . ;M� 1; (12)

form a complete orthonormal set of eigenvectors of cyclic
matrices, as can be easily verified by direct substitution.
The matrices �A and �B defined in (11) commute. As a
consequence, the complex exponentials (12) are a com-
plete set of eigenvectors of �A� �B, too.

The eigenvalues of �A� �B can be determined by insert-
ing the eigenvectors (12) into the eigenvalue equations and
using the parities of the functions a�j� and b�j�. We have
that, when M is odd,

�k � a�0� � 2
X�M�1�=2

j�1

�a�j� coskj� ib�j� sinkj�; (13)

and, when M is even,
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where ��.� is the periodic function

��.� �
X1
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with �j � a�j� � b�j� if j > 0 and �j � a�j� � b�j� if
j < 0. Note that TN�g� is a Toeplitz matrix. g�.� �
��.�=j��.�j is called the symbol of T. It is worth empha-
sizing that (15) has been obtained by assuming only the
translation invariance of the Hamiltonian (2) and periodic
boundary conditions.

We now make the key observation that when TN�g� is
symmetric, the matrix S, which appears in the definition of
DN�(�, is equal to TN . We can then apply a famous identity
of Heine [14] and Szegö [15], which asserts that if G�U� is
a function on U�N� that depends only on the eigenvalues
exp�i.j� of U and is such that G�U� �

QN
j�1 g�.j�, where

g�.� is 2% periodic, then

hG�U�iU�N� � det�gj�k�j;k�0;...;N�1; (17)
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where gl is the lth Fourier coefficient of g. In our context,
this implies that (9) can be expressed as an average with
respect to Haar measure over the unitary group U�N�, i.e.,
over the circular unitary ensemble of N � N random ma-
trices. A necessary and sufficient condition for TN�g� to be
symmetric is that ��.� should be real and even, or equiv-
alently � should be zero; in other words, the interaction in
the Hamiltonian (2) must be isotropic. When � � 0 the
symbol g�.� is a piecewise continuous function which
takes the values 1 and �1 and has discontinuities at all
points .r where the equation

��.r� � 0 (18)

is satisfied, with the additional condition that the first
nonzero derivative of ��.� at .r is odd.

Given that under the general conditions specified above
the entropy of entanglement can be expressed as an aver-
age over U�N�, it is natural to ask whether under different
conditions it can be expressed as an average over random
matrices drawn from the other classical groups. The ques-
tion is: how are the symmetries of the Hamiltonian re-
flected in the group which determines the entropy of
entanglement?

We begin with the orthogonal group O��2N�. The ana-
logue of the Heine-Szegö identity in this case relates group
averages to the determinant of a sum of Toeplitz and
Hankel matrices. A straightforward calculation generaliz-
ing that given above shows that this can be arranged for the
spectral determinant DN if (and only if) � � 0 and �Ajl �
a�j� l� � a�j� l� where, because of the periodic bound-
ary conditions, a must be a function on Z=MZ and must
also be even in order for �A to be symmetric. Note that the
Hamiltonians in this class are not translation invariant. The
properties of DN are the same as those in the unitary case,
except that TN�g� is the sum of a Toeplitz and a Hankel
matrix. The symbol has the same general form as in the
unitary case.

The calculations for the other compact groups follow
exactly the same pattern except that for Sp�2N� and
O��2N � 2�, �Ajk � a�j� k� � a�j� k� 2�, and for
O��2N � 1�, �Ajk � a�j� k� � a�j� k� 1�. Again, in
these cases the Hamiltonians are not translation invariant.

The asymptotics of the entropy of entanglement can now
be calculated using the Fisher-Hartwig conjecture for the
determinant DN in the unitary case [16] and recent gener-
alizations of this conjecture in the other cases [17,18],
and then by computing the integral in (9). The result is
that, as N ! 1,

EP �
2wGR
6

log2N; (19)

where R is the number of solutions of (18) in the interval
�0; %� and

wG �

�
1 if the average is over U�N�;
0 otherwise:

(20)
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The asymptotic relation (19) represents our main result.
In the unitary case, comparing with the results of [5,6,9], it
provides an explicit formula for the central charge, which
may be seen to depend in a nontrivial way on the geometry
of the Hamiltonian. In the case of the other classical
compact groups, when the Hamiltonian is not translation
invariant, the conformal-field-theoretic results do not apply
directly. The factor 2wG is universal, depending only on the
symmetries determining the classical compact group to be
averaged over. The factor R is Hamiltonian dependent. For
the XX model, which is an example with unitary symmetry,
R � 1 and (19) coincides with the formula derived in [4].

Lower order terms in the Fisher-Hartwig conjecture and
its generalizations lead directly to general formulas for the
next-to-leading-order (constant) term ~� in the asymptotics
of the entropy of entanglement when N ! 1. For the
unitary group we find

~� U�N� �
R

3 ln2
�K � 6I3 ln2�; (21)

where I3 is a constant evaluated in [4] to be 0:0221603 . . .
and
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Here �E is Euler’s constant. When R � 1, this equation
reduces to the result of Jin and Korepin for the XX model.
For the other compact groups we find, similarly, that
~� � ~�U�N�=2� R=6.

We end with some general remarks. First, the circular
ensembles of random matrices may be seen to play a
special role in the context of the spin chains and boundary
conditions we have considered here. It would be interesting
to know whether the other random-matrix ensembles may
be used to describe systems with different interactions and
boundary conditions. Second, we note that away from
critical points ��.� is continuous, and so R � 0, which is
consistent with previous observations that the logarithmic
growth of EP is a critical phenomenon. Our approach
determines the limiting value of EP away from critical
points, too. Finally, the calculations and results described
above extend straightforwardly to spin-spin correlations in
the families of quantum spin chains we have considered.
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