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Long-Term Memory: A Natural Mechanism for the Clustering of Extreme Events
and Anomalous Residual Times in Climate Records

Armin Bunde,1 Jan F. Eichner,1 Jan W. Kantelhardt,1,2 and Shlomo Havlin3

1Institut für Theoretische Physik III, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
2Fachbereich Physik und Zentrum für Computational Nanoscience, Martin-Luther-Universität Halle-Wittenberg,

06099 Halle (Saale), Germany
3Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Received 14 June 2004; published 31 January 2005)
0031-9007=
We study the statistics of the return intervals between extreme events above a certain threshold in long-
term persistent records. We find that the long-term memory leads (i) to a stretched exponential distribution
of the return intervals, (ii) to a pronounced clustering of extreme events, and (iii) to an anomalous
behavior of the mean residual time to the next event that depends on the history and increases with the
elapsed time in a counterintuitive way. We present an analytical scaling approach and demonstrate that all
these features can be seen in long climate records. The phenomena should also occur in heartbeat records,
Internet traffic, and stock market volatility and have to be taken into account for an efficient risk
evaluation.

DOI: 10.1103/PhysRevLett.94.048701 PACS numbers: 89.75.Da, 02.70.–c, 05.45.Tp, 92.70.Gt
700 950 1200
year

10
0

10
1

10
2

s [years]

10
−3

10
1

F
(s

) 
 [

a.
 u

.]

r3

r2

r1

(a) (b)

0.8

0.95

0.85

0.75

0.6

FIG. 1. (a) Illustration of the return intervals rq�l�, l �
1; . . . ; Nq for three equidistant threshold values q1; q2; q3 for
the water levels of the Nile at Roda (near Cairo, Egypt). One
return interval for each quantile q is indicated by arrows.
(b) DFA2 analysis for (i) the reconstructed Mann record of
northern hemisphere temperatures (981 yr, circles) [12],
(ii) the historical record of water levels of the Nile River [5]
(663 yr, squares), (iii) the reconstructed precipitation record of
New Mexico [13] (2129 yr, triangles down), (iv) the recon-
structed temperature record of Baffin Island [14] (1241 yr,
triangles up), and (v) the reconstructed river flow of the
Sacramento River [15] (1109 yr, diamonds).
Clustering of hazardous events has been reported in
central Europe for the Middle Ages as well as for the last
several decades (see [1–4] and references therein). A
typical example is shown in Fig. 1(a), where the annual
water levels of the Nile River [5], which exceed certain
heights (quantiles), are shown for 663 years. Even by eye
one can realize that the events are not distributed randomly
but are arranged in clusters. A similar clustering was
observed for extreme floods, winter storms, and avalanches
in central Europe (see, e.g., Figs. 4.4, 4.7, 4.10, and 4.13 in
[1], Fig. 66 in [2], and Fig. 2 in [4]). Model simulations
show that greenhouse-gas induced global warming leads to
an increased flood risk [6], which might explain the clus-
tering of floods in the last several decades. However, an
upward trend in the occurrence of the extreme floods has
not been detected [4].

Here we show that the long-term correlations, inherent,
e.g., in river flows [7] and temperature records [8], repre-
sent a natural mechanism for the clustering of the hazard-
ous events. We find that the distribution of the return
intervals strongly depends on the history and can be well
approximated by a stretched exponential. In addition, the
mean residual time to the next extreme event increases
with the elapsed time and depends strongly on the history.
We show that also this counterintuitive phenomenon can be
seen in climate records with long-term memory. In order to
avoid problems with seasonal trends, we focus on annual
records. The data we consider are from the NOAA
Paleoclimatological data bank [9].

Long-term correlated records fxig; i � 1; . . . ; N, with
zero mean and unit variance, are characterized by an
autocorrelation function Cx�s� � hxixi�si 	 1=�N 
 s��PN
s

i�1 xixi�s that decays by a power law, Cx�s� � s
�,
where the correlation exponent � is between 0 and 1. To
test the climate records for long-term correlations, we have
employed the detrended fluctuation analysis (DFA2)
05=94(4)=048701(4)$23.00 04870
[10,11]. In DFA2, one considers the cumulated sum Yi �Pi
j�1 xj and studies, in time windows of length s, the mean

fluctuation F�s� of Yi around the best quadratic fit. For
long-term correlated data, F�s� scales as F�s� � s�, with
� � 1
 �=2 (see, e.g., [8]). To standardize the records,
we subtracted each record by its mean and divided by its
variance. Figure 1(b) shows F�s� for five representative
climate records. In the double-logarithmic plot, the fluc-
tuation functions are approximately straight lines, with
slopes � � 0:95, 0.85, 0.8, 0.73, and 0.6 (from top to
bottom), yielding � � 0:1 (Northern Hemisphere), 0.3
(Nile), 0.4 (New Mexico), 0.55 (Baffin), and 0.8
(Sacramento).
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For describing the reoccurrence of rare events exceed-
ing a certain threshold q, we investigate the statistics of
the return intervals rq between these events [see Fig. 1(a)].
It is known that for uncorrelated records (‘‘white noise’’),
the return intervals are also uncorrelated and distributed
according to the Poisson distribution, Pq�r� �

1
Rq
�

exp�
r=Rq�, where Rq is the mean return interval for the
given threshold q (see, e.g., [16]).

To see how this behavior changes in the presence of
long-term correlations, we have used the Fourier-filtering
technique (see, e.g., [17,18]) that generates linear long-
term correlated records stochastically. As shown below, the
behavior of the climate records is consistent with the
behavior of these records, and nonlinearities are not needed
to explain the properties studied here. Figure 2(a) shows
the distribution Pq�r� of the return intervals, for � � 0:5,
0.3, and 0.1 and q � 1:5, 2.0, and 2.5, as a function of r=Rq.
The result for the shuffled (uncorrelated) records is also
shown. In both cases, RqPq�r� depends only on the ratio
r=Rq. This scaling is important, since it allows us to
extrapolate the behavior at very large q values (rare events)
from the behavior at small q values that are not rare and
therefore have good statistics.

For the shuffled data, the distribution function is a
simple exponential as expected. For the correlated data,
we obtain a stretched exponential [19],

Pq�r� �
a�
Rq

exp

b��r=Rq�
��; (1)
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FIG. 2. (a) Distributions Pq�r� of the return intervals r for the
thresholds q � 1:5 (Rq � 15, squares), 2.0 (Rq � 44, circles),
and 2.5 (Rq � 161, triangles) for simulated long-term correlated
records with � � 0:5 (top), 0.3 (middle), and 0.1 (bottom) (filled
symbols) and for the corresponding shuffled data (open sym-
bols). For the simulations, we used 1000 records of length
N � 2� 106 for each value of �. (b) Distributions Pq�r� of
the return intervals r for the five climate records considered in
Fig. 1(b) with the same symbols, for both original data (filled
symbols) and shuffled data (open symbols). The data have been
averaged over all quantiles q with Rq > 3 yr and more than
50 return intervals. The lines are the theoretical curves following
Eq. (1).
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where the exponent � is the correlation exponent, and the
parameters a� and b� are independent of q.

Figure 2(b) shows the distribution function of the repre-
sentative climate records from Fig. 1(b), and of the corre-
sponding shuffled records. While the shuffled data clearly
follow the Poisson distribution (dashed lines), the original
data are close to a stretched exponential decay (continu-
ous lines) with the � values obtained from Fig. 1(b). The
fluctuations of the results around the theoretical curves are
due to the relatively short length of the records.

The form of the distribution (1) indicates that return
intervals both well below and well above their average
value Rq (which is independent of �) are considerably
more frequent for long-term correlated than for uncorre-
lated data. The equation does not quantify, however, if the
return intervals themselves are arranged in a correlated or
in an uncorrelated fashion, and if clustering of rare events
may be induced by long-term correlations.

To study this question, we have evaluated the autocor-
relation function Cr�s� � hrq�l�rq�l� s�i 
 R2

q of the re-
turn intervals in simulated long-term correlated records.
Representative results for � � 0:4 and three q values (q �
1:5, 1.75, and 2.0) are shown in Fig. 3(a). In the double-
logarithmic presentation, the three curves are parallel
straight lines with slopes 
0:4. This result suggests that
also the return intervals are long-term power-law corre-
lated, with the same exponent � as the original record.
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FIG. 3. (a) Autocorrelation function Cr�s� of the return inter-
vals for q � 1:5 (circles), 1.75 (squares), and 2.0 (triangles) for
simulated long-term correlated records with � � 0:4.
(b) Conditional distribution function Pq�rjr0� versus r=Rq for
� � 0:4 and q � 1:5 (circles), 1.75 (squares), and 2.0 (triangles),
for r0 � Rq=4 (open symbols) and r0 � 4Rq (full symbols).
(c),(d) RqP

�
q �r� (open symbols) and RqP



q �r� (full symbols),

averaged over all r0 above and below the median return interval,
respectively, versus r=Rq for (c) artificial records and (d) the five
climate records from Fig. 1(b). The artificial data in (c) have the
same � values and mean record lengths as the climate records;
we studied 1000 records of size N � 1250.
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FIG. 4. (a) Mean residual time to the next event �q�xjr0� (in
units of Rq) versus r0=Rq for four q values (q � 1:0, 1.25, 1.5,
and 1.75, different symbols) and four values of the elapsed time
x since the last event (x=Rq � 0, 0.25, 1, and 4, from bottom to
top). (b) Mean residual time �q�xjr0� as a function of x=Rq, for
r0=Rq � 1=8 (lower curve) and r0=Rq � 8 (upper curve). The
middle curve represents the mean residual time averaged over
all r0. (c),(d) Mean residual times �
q �x� (full line) and ��q �x�
(dashed line), averaged over all r0 below and above the median
return interval, respectively, for (c) x � 0 and (d) x � Rq=4. The
symbols are for the five climate records from Fig. 1(b), for both
original data (filled symbols) and shuffled data (open symbols).
For obtaining the curves in (a),(b) we used the same statistics as
in Figs. 2(a) and 3(a) and 3(b), and for the theoretical curves in
(c),(d) and the error bars we used the same statistics as in
Fig. 3(c).
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Accordingly, large and small return intervals are not ar-
ranged in a random fashion but are expected to form
clusters.

As a consequence, the probability of finding a certain
return interval r depends on the value of the preceding
interval r0, and this effect has to be taken into account in
predictions and risk estimations. Figure 3(b) shows, for
two values of r0=Rq, the (conditional) distribution function
Pq�rjr0� that a return interval r0 is followed by a return
interval r, as a function of r=Rq, for � � 0:4 and q � 1:5,
2.0, and 2.5. The plot clearly displays the dependence on r0
due to the long-term memory. Since for fixed r0=Rq all data
points collapse to a single curve, the conditional distribu-
tion function scales as Pq�rjr0� � �1=Rq�f�r=Rq; r0=Rq�.

The dependence on the preceding return interval r0 is a
direct manifestation of the long-term memory. To reveal
this behavior in the relatively short climate records, it is
necessary to improve the statistics by integrating over a
certain range of r0 values. Here, we consider the median r�q
of the return intervals and study the conditional distribu-
tions P


q �r� and P�
q �r� of all those intervals that directly

follow return intervals r0 either below or above r�q, respec-
tively. Figures 3(c) and 3(d) show that the results for the
climate records (d) are in good agreement with those of the
corresponding simulated records (c). As expected, the
difference between P�

q and P

q , i.e., the dependence of

the distribution function on the history, becomes more
pronounced with decreasing value of �, i.e., increasing
long-term memory. The large fluctuations for the climate
records are due to their limited size.

The conditional distribution function Pq�rjr0� is a basic
quantity, from which the relevant quantities in risk estima-
tions can be derived [16]. For example, the first moment of
Pq�rjr0� is the average value Rq�r0� of those return inter-
vals that directly follow r0. By definition, Rq�r0� is the
expected waiting time to the next event, when the two
events before were separated by r0. The more general
quantity is the expected waiting time �q�xjr0� to the next
event, when the time x has elapsed. For x � 0, �q�0jr0� is
identical to Rq�r0�. In general, �q�xjr0� is related to
Pq�rjr0� by

�q�xjr0� �
Z 1

x
�r
 x�Pq�rjr0�dr

�Z 1

x
Pq�rjr0�dr: (2)

For uncorrelated records, �q�xjr0�=Rq � 1 (except for
discreteness effects that lead to �q�xjr0�=Rq > 1 for x > 0;
see [20]). Because of the scaling of Pq�rjr0�, we expect that
also �q�xjr0�=Rq scales with r0=Rq and x=Rq. Figure 4(a)
shows that this is indeed the case. The data collapse for
each value of x=Rq confirms the scaling property. The
figure clearly displays the effect of the long-term memory:
Small and large return intervals are more likely to be
followed by small and large ones, respectively, and hence
�q�0jr0�=Rq 	 Rq�r0�=Rq is well below (above) one for
04870
r0=Rq well below (above) one. With increasing x, the
expected residual time to the next event increases, as is
also shown in Fig. 4(b), for two values of r0 (top and bot-
tom curve). Note that only for an infinite long-term corre-
lated record, the value of �q�xjr0� will increase indefi-
nitely with x and r0. For real (finite) records, there exists
a maximum return interval which limits the values of x, r0,
and �q�xjr0�. The middle curve shows the expected resid-
ual time averaged over all r0, i.e., the unconditional resid-
ual time. In this case, the interval between the last two
events is not taken explicitly into account, and the slower-
than-Poisson decrease of the unconditional distribution
function Pq�r�, Eq. (1), leads to the anomalous increase
of the mean residual time with the elapsed time [20]. Very
recently, this approach (average over r0) has been applied
successfully to worldwide earthquake records [21]. For the
case of long-term correlated records, however, like the
hydroclimate records discussed here, the large differences
between the three curves in Fig. 4(b) suggest that for an
efficient risk estimation, also the previous return interval
has to be taken into account, and not only the distribution
of the return intervals.

To reveal this intriguing behavior in the relatively short
observed and reconstructed records, we improve the sta-
1-3
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tistics [similar to Figs. 3(c) and 3(d)] by studying the mean
expected residual times �
q �x� and ��q �x� for r0 below and
above the median r�q, respectively. For uncorrelated data,
both quantities are identical and coincide with Rq.

Figure 4(c) shows ��q �0�=Rq and �
q �0�=Rq versus � for
simulated records (lines) and the five representative cli-
mate records (symbols). The difference between ��q and
�
q becomes more pronounced with decreasing value of
�, i.e., increasing long-term memory. The results for the
climate records are in good agreement with the theoretical
curves. The same comparison for x=Rq � 1=4 instead of
x � 0 is shown in Fig. 4(d). The behavior is qualitatively
different: while �
q �0�=Rq increases with increasing �,
�
q �Rq=4�=Rq is rather constant. Again, the agreement
between simulated and real records is quite satisfac-
tory, revealing the strong effect of memory in the hydro-
climate records that also results in the clustering of the
extreme events. To show the significance of the results, we
also analyzed the corresponding shuffled data [as in
Fig. 2(b)]. We obtained ��q �0�=Rq � �
q �0�=Rq � 1 and
��q �Rq=4�=Rq � �
q �Rq=4�=Rq � 1:1. In the second case,
the shuffled data (following the Poisson distribution) show
a slight increase of the residual time (1.1 instead of 1). This
is a finite size effect that already has been noticed in [20].

In summary, we have shown that the long-term persis-
tence inherent in hydroclimate records represents a natural
mechanism for the clustering of the hazardous events seen
in central Europe in the Middle Ages as well as in the past
several decades. We also found that, as a consequence of
the long-term memory, the mean residual time to the next
event increases with the elapsed time and depends strongly
on the previous return interval. We have demonstrated that
also this counterintuitive phenomenon can be seen in long-
term climate records. We note that both features, the
clustering of the extreme events as well as the anomalous
behavior of the mean residual times to the next event,
should also appear in heartbeat records [11,22], Internet
traffic [23], and stock market volatility [24] that are known
to exhibit long-term memory.
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Science Foundation.
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