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Transition between Tonic Spiking and Bursting in a Neuron Model via the Blue-Sky Catastrophe
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We study a continuous and reversible transition between periodic tonic spiking and bursting activities in
a neuron model. It is described as the blue-sky catastrophe, which is a homoclinic bifurcation of a saddle-
node periodic orbit of codimension one. This transition constitutes a biophysically plausible mechanism
for the regulation of burst duration that increases with no bound like 1=

����������������
� � �0

p
as the transition value �0

is approached.
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The bursting activity of neurons has been described in
terms of the qualitative theory of slow-fast systems [1–4].
The classification of routes describing possible transitions
between tonic spiking and bursting is yet incomplete and
remains a fundamental problem for both neuroscience and
the theory of dynamical systems [5–9]. Qualitative de-
scription of a transition yields quantitative information
about changes of physical characteristics associated with
the transition. This approach has proven exemplary in
neuroscience for studies of transitions between silence
and tonic spiking. It identifies dependence of the spiking
frequency and amplitude on control parameters [10,11] and
predicts cooperative behavior of weakly coupled neurons
[10,12]. Similarly, applications of the qualitative theory of
slow-fast systems to the identification of transitions be-
tween tonic spiking and bursting can provide vital infor-
mation about the neuronal dynamics.

One of the routes from tonic spiking into bursting is
distinguished by the following events as a control parame-
ter is varied; the periodic spiking undergoes a series of
period-doubling bifurcations followed by a homoclinic
bifurcation of a saddle equilibrium [5,6,13,14]. Terman
[5] gives a rigorous proof of the existence of Smale horse-
shoes in this case, so chaos is a key signature for transitions
of this kind.

In [15] we described a different transition mechanism
based on a saddle-node bifurcation for periodic orbits with
noncentral homoclinics [16]. At this bifurcation, a stable
periodic orbit representing tonic spiking merges with a
saddle periodic orbit having transverse homoclinic trajec-
tories. It is distinguished by a bistability in the system such
that either tonic spiking or bursting (periodic and chaotic)
can be observed. As a control parameter � decreases to the
transition value �0, the burst duration can be as long as
j ln�� � �0�j. Realization of this mechanism predicts that
there exist critical control parameter values for which the
system can generate a train of bursts before it finally settles
down into periodic spiking. This intermittency is a conse-
quence of Smale horseshoe dynamics.

Here, we suggest a novel mechanism describing a re-
versible and continuous transition between spiking and
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bursting in neuron models. It is based on a codimension-
one bifurcation known as the blue-sky catastrophe [17–19].
Our study is the first application of this novel bifurcation to
realistic neuron models and to any physical system in
general. Rigorous proofs and three scenarios of the blue-
sky catastrophe in singularly perturbed systems can be
found in [20]. In [18] this bifurcation was shown to occur
in a modified Hindmarsh-Rose model. The geometry of the
bifurcation is illustrated in Fig. 1(a). At the bifurcation,
there exists a saddle-node periodic orbit whose two-
dimensional unstable manifold Wu returns to the periodic
orbit making infinitely many rotations in the node (attract-
ing) region. As a control parameter passes the critical
value, the saddle-node periodic orbit disappears and a
long stable periodic orbit is born [Fig. 1(b)]. The infinite
period of the periodic bursting is due to the slow passage of
the phase point through the ‘‘phantom’’ of the disappeared
saddle-node periodic orbit.

We study this transition in a model of a heart interneuron
from the medicinal leech. It describes well the dynamics of
the neuron under normal and pharmacologically modified
conditions [21–23]. Under pharmacological conditions,
which block Ca2� currents and the hyperpolarization acti-
vated inward current and partially block outward currents
[24], the neuron can be described by the model based on
just two currents, noninactivating K� current, IK2, and
transient Na� current,INa [21]. It is described by

CV0 � �	gK2m
2
K2�V � EK� � gl�V � El�

� gNahNa�V � ENa�f��150; 0:0305; V�3 � Ipol
;

m0
K2 � 	f��83; 0:018� Vs

K2; V� � mK2
=�K2;

h0
Na � 	f�500; 0:0325; V� � hNa
=�Na; (1)

where the variables V, mK2, and hNa are the membrane
potential, activation of IK2, and inactivation of INa, respec-
tively; Ipol is a polarizing current; gK2 and gNa are the
maximum conductances of IK2 and INa, correspondingly;
EK and ENa are the reversal potentials of K� and Na�,
respectively; gl and El are the conductance and reversal
potential of the leak current, respectively; C � 0:5 nF is
the membrane capacitance; Vs

K2 is a parameter shifting the
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FIG. 1 (color). Phenomenological sketch (a) and matching
numerical portrait (b) of the model (1) at the blue-sky catastro-
phe. A saddle-node periodic orbit Lbs is depicted in
(a) for the slow-fast system (2) in the �z; x� phase space com-
bined with the bifurcation diagram of its fast subsystem, in
(b) for the neuron system (1) in �mK2; V� phase space for Vs

K2 �
24:5 mV. The blue Z-shaped line, Meq, consists of the equilib-
rium states of the fast subsystem (dotted and solid segments
represent unstable and stable ones). The point of its intersection
with the regular nullcline _z � 0 in (a) and m0

K2 � 0 in (b) is an
equilibrium state of the system. The green cylinder-shaped
surface MLC � Ms

LC [ Mu
LC is composed of the stable and un-

stable limit cycles of the fast subsystem. The line hxi shows the
dependence of the x coordinate of the limit cycle averaged over
its period on z, and hVi vs mK2 in (b). The dashed, blue line is the
average nullcline h _zi � 0 in (a) and hm0

K2i � 0 in (b). The
contact point between hVi and hm0

K2i � 0 corresponds to the
saddle-node periodic orbit, Lbs. The gray disk Wss in (a) is its
strongly stable manifold. The part of Ms

LC to the right of Lbs is
the unstable manifold, Wu of the saddle-node periodic orbit. In
(a), the red line outlines rapid transitions of the phase point
between the hyperpolarized phase and tonic spiking phase of
bursting. In (b), the red curve represents a trajectory homoclinic
to Lbs. This trajectory transforms into a closed periodic orbit
representing bursting as parameter Vs

K2 passes a bifurcation value
and Lbs disappears.

PRL 94, 048101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
4 FEBRUARY 2005

04810
activation curve of IK2; �K2 and �Na are the time constants
of activation of IK2 and inactivation of INa, respectively;
the function f is given by f�a; b; V� � 1=�1� ea�V�b��.
The values of the parameters used in this study are Ipol �
0:006 nA, gK2 � 30 nS, EK � �0:07 V, ENa � 0:045 V,
gNa � 160 nS, gl � 8 nS, El � �0:046, �hK2

� 0:9 s, and
�hNa

� 0:0405 s. We use Vs
K2 as a control parameter. In the

model, �K2 is about 20 times larger than �Na and the time
constant of V and the inactivation of INa. Hence, mK2 is the
slow variable and the two other variables are the fast ones,
so the model (1) can be viewed as a slow-fast system:

_x� F�x; z�; _z� �G�x; z;�� � ��g�x;��� z�; (2)

where x 2 Rn, n 
 2, and z 2 R1; � is a control parame-
ter and � � 1=� � 1. The last condition indicates that the
dynamics in z is slow in time. We also assume that the
functions are smooth enough; furthermore, G is linear in z
such as the function on the right-hand side of the slow,
middle subsystem in (1), in particular, and in a generic
neuron model following Hodgkin-Huxley formalism [25].
At � � 0, the fast subsystem becomes independent of the
slow one. The z variable can then be treated as a bifurcation
parameter in the fast subsystem. We call the �z;x� space the
extended phase space of the fast subsystem. We suppose
that as z increases the fast subsystem undergoes a number
of bifurcations illustrated by Fig. 1(a).

Stationary states in the fast subsystem are determined by
condition F�x; z� � 0. It yields an equation x � xeq�z� for
a spatial curve Meq in the extended �z;x�-phase space. As
in most models of neurons, the curve Meq has the Z shape
(see Fig. 1). In our case, its upper and middle branches
consist of repelling and saddle equilibria, whereas the
lower branch is composed of stable equilibria of the fast
subsystem. The left knee point corresponds to a saddle-
node bifurcation where two equilibrium states, one stable
and one of the saddle type, merge and vanish for z < zsn.
We suppose also that when z < zsn the fast subsystem
possesses an exponentially stable limit cycle. As z in-
creases, the stable limit cycle traces out a cylindrical-like
surface, Ms

LC, in the extended �z;x� space, which termi-
nates at z � zlc

sn where it merges with the surface Mu
LC

spanned by the unstable limit cycles. Together, Ms
LC [

Mu
LC defines the surface MLC of the periodic solutions

xlc � ’�t; z�. Its unstable constituent, Mu
lc, adjoins to the

curve Meq at some z � zh [Fig. 1(a)]. Here, the unstable
limit cycle becomes a homoclinic loop of a saddle equi-
librium state on the middle branch of Meq. An average
value hxi on the limit cycle ’�t; z� over its period T for each
z is given by hxi � 1

T�z�

RT�z�
0 ’�t; z�dt. The graph of hxi

versus z has a knee point at z � zlc
sn in the extended �z; x�

phase space. This curve terminates at the saddle equilib-
rium on Meq at z � zh. The knee point corresponds to the
saddle-node bifurcation of the limit cycles in the fast
subsystem which merge and vanish for z > zlc

sn.
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FIG. 2 (color online). Samples of oscillatory waveforms gen-
erated by the neuron model (1) for decreasing values of the
bifurcation parameter Vs

K2. The bursting regime (the three top
traces) is continuously transformed into tonic spiking (the bot-
tom trace). The burst duration increases as Vs

K2 approaches the
blue-sky bifurcation’s value (Vs

K2 � 24:25 mV). The bottom
chart samples the spiking oscillations from the traces above.
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Let us discuss the dynamics of the system (2) for 0 <
� � 1 with z being a slow variable. The surface where
_z � 0, such that _z < 0 ( _z > 0) below (above) it, is called a
nullcline. For the system to exhibit oscillations, the null-
cline is to cross the unstable branch of the curve Meq, as in
Fig. 1(b); this condition guarantees that the whole system
has no stable equilibrium state. The slow equation _z �

�G�xeq�z�; z; �� gives the first order approximation for
the z component of the phase point moving along Meq,
with the rate �� � 1. Observe that along the hyperpolar-
ized (stable) branch the phase point slowly moves leftward
until its z coordinate reaches zsn and the phase point makes
a fast switch onto the cylindrical surface MLC. On average,
the winding motion of the phase point around MLC is
described by its slow translation along the curve hxi. The
dynamics of the z variable around MLC is governed, in first
approximation, by the equation _z � �hG�z; ��i �

�=T�z�
RT�z�

0 G�’�t; z�; z; ��dt. When _z > 0 ( _z < 0) on
the curve hxi, the phase point moves rightward (leftward)
along the cylindrical surface MLC. Having _z > 0, the phase
point makes winding motions around the cylinder slowly
translating towards the edge of MLC where it switches back
onto Meq to start a new cycle of bursting.

Let the function hGi have a pair of zeros on the interval
	z1sn; z

lc
sn
 at some z0i ���, i � 1; 2. It follows from

Pontryagin-Rodygin’s theory [26] that each zero corre-
sponds to a periodic orbit of the whole, singularly per-
turbed system. Stability of a robust periodic orbit is
determined by two factors. First, its stability in the x space
follows from the stability of the corresponding robust limit
cycle in the phase space of the fast subsystem for the given
z0i ���. Second, it is stable in z if @hGi=@z < 0 at z0i ���, and
unstable otherwise.

Let the distance between the zeros be controlled by � so
that it vanishes at some � � �0. Then, a plain saddle-node
bifurcation occurs at �0 provided that @2hGi=@z2 � 0 at
the critical point, and hence the distance between the points
is evaluated as �

����������������
� � �0

p
. Introduce next an averaged

nullcline h _zi � 0 as the graph defined by the points
�hgi; hxi�, where hg�z; ��i � 1=T�z�

RT�z�
0 g�’�t; z�; ��dt;

note that both components depend parametrically on z. If
for given � this nullcline h _zi � 0 crosses transversally the
curve hxi, then the z coordinate of such an intersection
point is evidently a simple zero of the function hG�z�i, i.e.,
equals z0i . Recall that hG�z0i �i � 0 means hg�z; ��i � z0i �
0 as follows from (2). This observation lets one visualize
effectively the locations of the periodic orbits in the phase
space of the singularly perturbed system, as well as deter-
mine their possible bifurcations. The approach is used for
the model (1) to create a partition of its phase space shown
in Fig. 1(b), with hVi and hm0

K2i � 0 standing for the
corresponding nullclines.

Variations of � translate the curve h _zi � 0 in the �z;x�
space, so that one may make both curves have a quadratic
04810
tangency for some � � �0. This saddle-node bifurcation
for the periodic orbits constitutes the first component of the
blue-sky catastrophe in slow-fast systems. A plain saddle-
node periodic orbit in Rn, n 
 3, has two unique mani-
folds. The strongly stable manifold Wss divides locally a
vicinity of the saddle-node orbit into two regions: node and
saddle [see Fig. 1(a)]. In the node region, a trajectory is
attracted to the periodic orbit. In the saddle region, the
periodic orbit is repelling. The unstable manifold Wu con-
sists of the trajectories which are attracted to the saddle-
node periodic orbit in backward time. As for the forward
time, a trajectory on Wu follows the path of the bursting
regime, i.e., moves leftwards along the lower, hyperpolar-
ized branch of Meq, and, provided that zsn < zbs, returns to
the saddle-node orbit from the left, as seen in Fig. 1(b).
Thus, globally the unstable manifold Wu is homoclinic to
the periodic orbit. This is the second component of the
blue-sky catastrophe.

When � > �0, i.e., the average nullcline is lifted up, the
saddle-node orbit decouples into stable and unstable ones.
The former corresponds to tonic spiking. When the null-
cline is lowered, the saddle-node periodic orbit vanishes
and gives rise to a new stable periodic orbit of a large
period and amplitude, which corresponds to bursting. This
orbit consists of two phases, silent (interburst) and spiking.
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FIG. 3 (color online). Dependence of the period of bursting on
the control parameter Vs

K2. The numerically obtained points are

marked by �’s. The curve is given by 0:31=
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where 24:25 mV is the critical value of the transition.
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The burst duration, the time interval that the phase point
needs to pass by the phantom of the saddle node, is
estimated as 1=

����������������
� � �0

p
. Hence, by adjusting the devia-

tion of � from the critical value �0 one may control the
burst duration without changing the interburst interval (see
Figs. 2 and 3). Thus, a continuous transition from the
bursting into tonic spiking is achieved by a single parame-
ter variation. This transition is demonstrated in the model
(1) in Fig. 2. The parameter Vs

K2 plays the role of the
control parameter �. Variations of Vs

K2 determine the po-
sition of the average nullcline hm0

K2i � 0. As Vs
K2 ap-

proaches the critical value 24:25 mV the duration of the
bursting interval increases with no bound as predicted. The
standard deviation of the period of bursting remains zero
while the parameter is varied, thereby confirming that
bursting is, indeed, represented by a stable periodic orbit.
If one changes the parameter backwards, then the system
will regain the round, stable periodic orbit corresponding
to spiking. This kind of the boundary between the regimes
can be called safe [18].

Asymptotic estimates of the dependence of temporal
characteristics of bursting on the control parameter are in
a good agreement with the numerically obtained data for
the neuron model (Fig. 3). The period of bursting suffices
for the same estimate, because the interburst interval re-
mains almost constant. As Vs

K2 changes from �22:20 to
�24:25 mV the interburst interval decreases from 6:16 to
5:51 s, compared to the burst duration growing from 5:66
to 957 s. The spike frequency remains nearly constant
around 5:5 Hz, which is a physiologically observable
value. The number of spikes in a burst is proportional to
the duration of the burst.

We propose a new mechanism of continuous transition
between tonic spiking and bursting regimes in a model of a
pharmacologically treated leech heart interneuron. This
transition based on the bifurcation of the blue-sky catas-
trophe is generic for a broad class of neuronal models
utilizing Hodgkin-Huxley formalism.
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