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Subdiffusive Axial Transport of Granular Materials in a Long Drum Mixer
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Granular mixtures segregate radially by size when tumbled in a partially filled horizontal drum. The
smaller component moves toward the axis of rotation and forms a buried core, which then splits into axial
bands. Models have generally assumed that the axial segregation is opposed by diffusion. Using narrow
pulses of the smaller component as initial conditions, we have characterized axial transport in the core. We
find that the axial advance of the segregated core is well described by a self-similar concentration profile
whose width scales as t�, with �� 0:3< 1=2. Thus, the process is subdiffusive rather than diffusive as
previously assumed. We compare our results to two one-dimensional model equations which contain self-
similarity and subdiffusion: a linear fractional diffusion model and the nonlinear porous medium equation.
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An interesting property of dry granular materials is their
tendency to separate by size and density under a wide
variety of flow conditions [1–4]. Granular segregation is
widely found in nature and plagues industrial processes
as well. Probably the best controlled and most widely
studied example is segregation along the axis of a partially
filled, horizontal ‘‘drum mixer’’ [5–17]. After hundreds of
drum rotations, an initially mixed binary distribution of
different-sized grains sorts itself into almost periodic bands
along the axis of the drum. These bands are threaded by a
radial core of the smaller grains which develops prior to
axial band formation [7,8,12,15–17]. The radial core typi-
cally forms after just a few drum rotations. Accounting for
this rich dynamical behavior has been the goal of cellular
automata models [18], molecular-dynamics simulations
[19], and several continuum theories [20–26]. The axial
bands must somehow be sustained against being mixed
away by the random motion of the grains. Continuum mod-
els have generally assumed that the random motions mimic
normal diffusion and therefore that normal Laplacian gra-
dient terms determine the short-wavelength cutoff of the
axial band pattern. In this Letter, we experimentally chal-
lenge this common assumption. We find, surprisingly, that
the axial transport of the radially segregated core along the
drum is slower than diffusion, i.e., that it is subdiffusive. It
is nevertheless described by a self-similar profile which
scales approximately as t1=3. We also find that the self-
diffusion of the larger particles is subdiffusive. These
results have strong implications for models of axial segre-
gation and possibly for other theories of granular mixing.

Early theoretical models regarded axial band formation
as the result of a diffusion process with a negative diffusion
coefficient [20,21,23]. These models ignore the radially
segregated core, and they cannot account for the oscillatory
transient that precedes axial band formation in some mix-
tures [10,11,13]. This oscillatory traveling wave state ap-
parently demands that the basic dynamics be at least
second order in time. A later model due to Aranson and
co-workers [24,25] reproduced both axial segregation as
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well as the oscillatory transient, while still ignoring the
core. However, we have recently shown that the core
dynamic is also oscillatory and, therefore, the above model
is not adequate [12]. Another model due to Elperin and
Vikhansky [26] regards axial segregation as resulting from
a radial core instability leading to a spatially periodic
thickening of the core. Unfortunately, this model cannot
account for the traveling wave state. In all cases, these
models explain the short-wavelength cutoff of the axial
band pattern as the result of the supposed axial diffusion of
the smaller grains. Below, we show that axial transport is
not well described by normal diffusion. This is true of
either the smaller grains in a binary mixture or of the larger
grains in a self-mixing process. This falsifies a common,
basic assumption of segregation models.

A few studies have investigated the axial transport of
grains experimentally [15–17,27], but none have system-
atically investigated the effects of varying grain type and
drum rotation rate. Here we report experiments which
characterize the axial transport of radially segregated
grains using several different grain types and drum rotation
rates, starting with a narrow pulse initial condition.

The drum mixer used in all experiments consisted of a
horizontal Pyrex tube, 600 mm long with an inner diameter
of 28.5 mm, rotated about its long axis at a constant
rotation rate of 0.31 or 0:62 rev=s. The flow was smoothly
streaming without avalanches. The larger grains were ei-
ther cubic white table salt or transparent glass spheres and
had a size range of 300–420 �m. The smaller grains were
either irregularly shaped black hobby sand or bronze
spheres, with a size range of 177–212 �m. The filled
volume fraction of the drum was 28%. In order to repro-
ducibly fill the drum, the grains were loaded into a long
U-shaped channel, which was inserted lengthwise into the
drum and rotated to deposit its contents. This procedure
ensures a uniform filling fraction of the drum. To obtain
reproducible, quantitative dynamical information, we used
a pulse initial condition. The pulse was made by placing
thin spacers in the U-shaped channel 1.5 mm apart. The
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1.5 mm space was filled with the smaller grains, and the
remaining space was filled with the larger grains.

After a few drum revolutions, the pulse of small grains
forms a subsurface radial core and cannot be observed
using standard surface-lighting and video imaging tech-
niques. Instead, we used a bulk visualization technique
developed by Khan et al. [12]. The large grains are trans-
lucent and the small grains are opaque. When a bright
light source is placed behind the rotating drum, one can
observe a shadow of the radial core on the front face of the
granular sample. This shadow is a two-dimensional pro-
jection of the radial core. A computer controlled high
speed camera was used to observe the radial core shadow.
Five images per drum revolution were obtained and aver-
aged to determine the evolution of the radial core.
Figure 1(a) shows a typical image of the radial core
shadow. Using edge detection, the radial core height
h�x; t� was measured as shown in Fig. 1(b) and expressed
as a fraction of the full height of the material in the drum. If
we assume that any cross section of the three-dimensional
structure of the radial core is an ellipsoid, the square of
the diameter of the radial core h2 is proportional to the
volume of small grains contained in the radial core at each
axial position x. Figure 1(c) shows the time evolution of the
FIG. 1 (color online). (a) An image of the shadow of the radial
core formed by 177–212 �m sand grains within 300–420 �m
salt grains. (b) The detected edge used to determine the vertical
extent h�x; t� of the core. (c) The x integral of h is not constant in
time and is thus not proportional to the volume of small grains
contained within the radial core. (d) The integral of h2 is
constant in time and is proportional to the desired concentration.
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x integral of h, which increases with time. Figure 1(d)
shows that the x integral of h2 is constant in time, as it
should be for a conserved quantity. This validates our
assumption about the core shape and demonstrates that
h2 can be used as a local concentration measure. The error
in measurement of h2 corresponds to an error in h of �2
pixels.

For a normal diffusive process, the width of a narrow
pulse initial condition grows as t1=2. In our experiment, the
pulse of small grains does not mix into the larger ones, but
instead the pulse sinks below the surface of the larger
grains forming a radial core, which then spreads axially.
We can nevertheless ask if this axial spreading is analogous
to normal diffusion, as is assumed in the models
[20,21,23–26]. Figure 2(a) shows the radial core concen-
tration profile at different times, for a mixture of small sand
grains and large salt grains. Plotting the full width at half
maximum of the concentration profile against time, we
determined the power-law dependence of the radial core
width with time, as shown in Fig. 2(b). From this, we
determined that the width scales as t�, where �< 1=2.
This analysis, however, determines only the power-law
time dependence of one arbitrarily chosen dimension of a
pulse (here, the half-maximum width) and not the whole
pulse shape. For a symmetric initial condition, data col-
lapse can test the scaling of the entire pulse. Figure 2(c)
shows collapsed data corresponding to the concentration
FIG. 2 (color online). (a) Concentration profiles of a spreading
radial core pulse of sand grains within salt grains at various
times. (b) Power-law scaling of the FWHM of the radial core
pulse. From the linear fit (solid line) we find that the width
/t0:38. (c) Collapsed concentration profiles of the radial core
pulse corresponding to (a). The collapse parameter is � � 0:37.
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profiles in Fig. 2(a), where the axial length scale was
transformed as x ! xt�� and the axial concentration of
small grains C�x; t� was transformed as C ! Ct�. The
pulse width increases at the same rate as the pulse ampli-
tude decreases; thus the spreading process is self-similar.
This implies that the integrated concentration is constant
and that no grains are lost from the core. The average
collapse parameter for large salt grains and small sand
grains with a drum rotation rate of 0:62 rev=s is � �
0:37� 0:03, averaged over ten runs. Similar experiments
were repeated for different combinations of grains at two
drum rotation rates. The results are shown in Table I. We
conclude that cores of small grains spread axially as t�

where �� 1=3< 1=2, independent of grain type and drum
rotation rate within the smoothly streaming regime.

It is interesting to compare the spreading of radially
segregated cores of small grains with the nonsegregating
self-diffusion of the large grains alone. To observe this
experimentally, some of the large grains were dyed black.
These dyed grains were loaded into a drum full of other-
wise identical white grains with a 1.5 mm wide pulse as the
initial condition. The space-time evolution was observed
using standard surface-lighting and imaging techniques
[10,11]. Figure 3(a) shows the concentration profile of
dyed salt particles at various times. These data were col-
lapsed in a similar way as discussed previously, as shown
in Fig. 3(b). Again, we find a collapse parameter �< 1=2.
For runs using salt grains, � � 0:29� 0:01, and for runs
using glass spheres, � � 0:34� 0:04, each averaged over
five runs. Thus, we conclude that the self-diffusion of
grains in the rotating drum is also subdiffusive, even
when no segregation is involved. We discuss some differ-
ences between these two cases below.

In addition to examining the temporal scaling of the
pulse, we can also measure in detail the functional shape
of the scaling solution. Here it is possible to distinguish
between different subdiffusive processes. We have inves-
tigated two candidate models for radial core spreading: the
fractional diffusion equation (FDE) and the porous me-
dium equation (PME). The fractional diffusion equation is

@�

@t�
C�x; t� � D

@2

@x2
C�x; t�; (1)
TABLE I. Collapse parameters for the self-similar spreading
of radial cores in various grain types and rotation frequencies.

Large grains
300–420 �m

Small grains
177–212 �m

Rotation rate
(rev=s)

�

Salt Sand 0.31 0:38� 0:03
Salt Sand 0.62 0:37� 0:03
Glass Bronze 0.31 0:31� 0:04
Glass Bronze 0.62 0:29� 0:01
Glass Sand 0.31 0:35� 0:03
Glass � � � 0.31 0:34� 0:04
Salt � � � 0.31 0:29� 0:01

04800
where � � 2� denotes the order of a fractional time de-
rivative [28,29]. Solutions of this linear equation have the
property that the width of a narrow pulse initial condition
grows as t�, where � 	 1=2. If � � 1=2, the solution
reduces to normal Fick diffusion. This FDE model is often
used to describe processes which occur in spaces where
there are temporal or spatial constraints, such as the flow of
tracers through porous media [30]. The FDE has an ana-
lytic series solution in terms of Fox’s H-functions [28,29],
which forms the self-similar scaling solution. We also
examined the PME,

@
@t

C�x; t� � ~D
@2

@x2

C�x; t�2�: (2)

This nonlinear model describes the spreading of a compact
mound and has the property that for a narrow pulse initial
condition, the width grows as t1=3, and the scaling solution
has a parabolic profile [31].

We fit radial core concentration data collapsed with � as
a free parameter to the series solution of the FDE, and data
collapsed with � � 1=3 to a numerical solution of the
PME, as shown in Figs. 4(a) and 4(b), respectively. We
find that while both solutions model the collapsed concen-
tration profiles reasonably well within experimental error,
the PME has a smaller systematic discrepancy, since the
profiles are better described as parabolic. The FDE solution
has exponential wings and inflection points that are not
obvious in the data. We note, however, that our projection
visualization technique may simply be too insensitive to
detect these tails.

We also fit the nonsegregating self-diffusion of the large
grains to both models and find that the FDE gives a
qualitatively better fit because in this case, the concentra-
tion profiles have tails within experimental resolution,
while the parabolic PME solution does not. Examples of
FIG. 3 (color online). (a) Concentration profiles of a mixing
pulse of dyed black salt grains surrounded by white salt grains.
(b) Collapsed concentration profiles corresponding to (a). The
collapse parameter is � � 0:3.
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FIG. 4 (color online). Collapsed concentration profiles of a
black sand radial core in salt grains fit to (a) the fractional
diffusion equation (solid line) and (b) the porous medium
equation (solid line). Collapsed concentration profiles of mixing
dyed black salt grains fit to (c) the fractional diffusion equation
(solid line) and (d) the porous medium equation (solid line).
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these fits to collapsed concentration profiles of mixing salt
grains are shown in Figs. 4(c) and 4(d). In all cases,
however, fits to ordinary Fick diffusion with � � 1=2 are
very poor.

In conclusion, our results show that the axial transport
of grains in a rotating tube is a subdiffusive process. This
is true of both small particles comprising a segregated
radial core as well as for surface mixing of larger grains.
In all cases, we find temporally self-similar concentra-
tion profiles that scale approximately as t1=3. These con-
clusions suggest that spontaneous axial segregation pat-
terns in such tubes are more weakly damped, in the sense
that they are sustained against slower mixing processes,
than has been previously supposed. The goal of our future
work is to elucidate the connection between axial band
formation and the axial transport of grains, which is still
unclear.
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