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Phase Diagram and Critical Exponents of a Dissipative Ising Spin Chain
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We consider a one-dimensional Ising model in a transverse magnetic field coupled to a dissipative heat
bath. The phase diagram and the critical exponents are determined from extensive Monte Carlo
simulations. It is shown that the character of the quantum phase transition is radically altered from the
corresponding nondissipative model and the double well coupled to a dissipative heat bath with linear
friction. Spatial couplings and the dissipative dynamics combine to form a new quantum criticality which
is independent of dissipation strength.
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Dissipation in a quantum system is an important statis-
tical mechanical problem having ramifications in systems
as diverse as a single spin coupled to an environment [1] to
limitations of quantum computation [2]. Of particular im-
portance are the connections among decoherence, noise,
dissipation, and the amount of coarse graining necessary
for classical predictability [3]. Dissipation can arise when
we focus on some distinguished variables of a system,
which are coupled to the ignored environment variables
that are integrated out in a closed universe. Since dynamics
and thermodynamics are intimately intertwined in quan-
tum mechanics, dissipation plays a very important role.

Although a single two-state system coupled to dissipa-
tion has been extensively discussed in the literature [4], and
its practical implications are abundant, the case of infi-
nitely many spatially coupled two-state systems has not
been discussed. We shall show that spatial couplings and
the dissipative dynamics combine to determine a new class
of quantum critical points, which is different from the
dissipative phase transition of the single two-state system
[5] and the corresponding nondissipative model. The na-
ture of the quantum criticality does not depend on the value
of the dissipation strength. This finding is in striking con-
trast to predictions for an array of resistively shunted
Josephson junctions [6,7].

The Hamiltonian for the Ising spin chain in a transverse
field and coupled to a heat bath reads
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where �x and �z are the Pauli matrices. To each site, i, we
have coupled a set of independent bosons fai;kg (destruc-
tion operators), of frequency!i;k, representing the environ-
ment. The coupling strength, Ck, to the coordinate of the
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kth oscillator is chosen such that the spectral function
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cutoff frequency !c, but vanishes otherwise. This spectral
density defines linear dissipation whose strength is deter-
mined by the parameter � [8].

The bath degrees of freedom can be integrated out in a
manner identical to the treatment of the spin-boson prob-
lem [9]. The only difference is to recognize that the transfer
matrix of the two-dimensional classical Ising model is the
one-dimensional Ising model in a transverse field (non-
dissipative, of course) [10]. The partition function defined
on a �1� 1�-dimensional lattice indexed by i and � is
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where Z0 is the free boson partition function and
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The classical Ising variables are defined by f�i;� � 	1g,
and the total number of lattice sites in the spatial and
imaginary time directions are Nx and N�, respectively.
Periodic boundary conditions are applied both in the space
and imaginary time directions. The long-ranged term con-
taining the dimensionless variable � describes the Ohmic
dissipation [11]. Here K � �cJ and e�2� � tanh��c��,
where �c is the lattice spacing in the imaginary time
direction [12]. The universal scaling properties should
not depend explicitly on �c, and we can set it to unity
without loss of generality. We shall investigate the critical
behavior of this partition function as a function of the
parameters K, �, and �.
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We use Monte Carlo simulations to study the action in
Eq. (3), employing a variant of the Swendsen-Wang cluster
algorithm [13] developed by Luijten and Blöte [14]. This
cluster algorithm greatly reduces autocorrelation times and
allows us to simulate lattices of more than 107 spins. First,
assuming a continuous phase transition, we attempt the
scaling procedure of Ref. [15]. For each value of �, we
determine the critical coupling Kc and the dynamical
critical exponent z self-consistently by looking for a data
collapse of the Binder cumulant ratio B � 1� hm4i=
�3hm2i2�. Near the critical point, B scales as

B�Nx;N�� � �B

�
Nx
�
;
N�
�Nx�z

�
: (4)

In particular, at the critical point, where the correlation
length � diverges, the Binder cumulants collapse onto a
universal function of N�=�Nx�z. The strategy is thus to plot
B as a function of N� for different values of Nx. At the
critical coupling Kc the maximum value of B�Nx; N�� is
independent ofNx, and the critical exponent z can be found
from the optimal collapse of these data sets onto the
universal curve �B�0; N�=Nzx�, as shown in Fig. 1. We
use reweighting techniques [16] to vary the value of K
continuously and omit small system sizes where finite size
corrections become important. The excellent data collapse
validates the scaling ansatz in Eq. (4).

At first, we fix � � � 1
2 ln
tanh�1�� � 0:136 and calcu-

late the phase diagram as a function of � andK. It is shown
in Fig. 2, and the corresponding values of Kc and z are
listed in Table I. The critical point �� at K � 0 was
computed using the method in Ref. [17] to be �� �
1:2492�4�. The phase boundary Kc��� seems to approach
theK � 0 axis with zero slope, which points to an essential
singularity. This can be understood from a simple mean-
field argument, since the divergence of the susceptibility
���! ��

�� at K � 0 is exceedingly strong. The direction
of approach to the critical point in the fugacity-� plane
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FIG. 1 (color online). Data collapse of Binder cumulants at the
critical point for � � 0:6 and z � 2. Points to the left of the
dashed line were not considered since finite size effects become
important in this region.
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does determine the precise form [5], but the divergence has
an essential singularity as �! ��

� [���� � eA=
����������
����

p

].
Therefore, for finite but small Kc, the phase boundary of
the coupled system is given by 2����Kc � 1, hence the
result shown in Fig. 2.

We next consider the order parameter correlation func-
tion C�x; ��, which in an infinite system scales as

C�x; �� � h�x;��0;0i � h�x;�ih�0;0i

� x��z� �1�g�x=�; �=xz�: (5)

The spatial correlation length � diverges at the critical
point and the characteristic frequency scale vanishes as
��z, as long as the dynamical critical exponent z is a finite
and well defined quantity. At the critical coupling Kc,
Eq. (5) simplifies to

C�x; �� � x��z� �1�~g��=xz� � ���z� �1�=zĝ�xz=��: (6)

If we set � � 0 and K � Kc, the spin-spin correlation
function in the spatial direction should therefore decay
asymptotically as C�x; 0� � x��z� �1�. Observing that
N� * 5Nzx is sufficient to avoid finite size effects in the �
directions, we choseNx � 140 andN� � 105 and show the
result in Fig. 3. Fits were performed to the functional form
[x�k � �Nx � x��k] in the region xmin � r � Nx=2 � 70.
The optimal value for k � z�  � 1 decreases from 1.003
for xmin � 5 to 0.99 for xmin � 20, while the error bars
increase in size. We estimate z�  � 2:00�1�.

The imaginary time correlation function, shown in
Fig. 4, falls to zero exponentially on the ordered side and
h�x;��0;0i approaches h�x;�i2. On the disordered side, the
correlation function cannot decay faster than ��2 [18]
and does not allow one to define a correlation time and a
dynamical critical exponent z except in the sense of a
generalized ‘‘Josephson length’’ [19]. Taking into account
the observed large corrections to scaling, our results at the
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FIG. 2. Phase diagram of the dissipative quantum Ising chain
in the space of nearest neighbor coupling K and dissipation
strength � for � � 0:136. The phase boundary appears to
approach the K � 0 axis with zero slope, well approximated
by an essential singularity.
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FIG. 4. Spin-spin correlation function in imaginary time for
� � 0:6, Nx � 500 and N� � 104. The three curves show (from
top to bottom) the decay at the critical point, and in the
disordered and ordered phase, respectively.

TABLE I. Critical coupling and the critical exponents z and
# for different values of the dissipation strength � and the
coupling �.

� � Kc z #

0.136 0 1 1 1
0.136 0.2 0.457 699(5) 1.97(3) 0.637(7)
0.136 0.4 0.233 96(1)
0.136 0.6 0.103 842(2) 2.00(2) 0.639(3)
0.136 0.8 0.031 42(1)
0.136 1.0 0.003 104 5(1) 1.97(4) 0.624(13)
0.136 1.2492(4) 0
1.153 0.6 0.001 116 9(2) 1.98(4) 0.623(9)
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critical point K � Kc, shown in Fig. 4 for Nx � 500
and N� � 104, are roughly consistent with Eq. (6)
and the previously determined values of z and  . On
the other hand, it was shown that for the corresponding
�0� 1�-dimensional problem C��� � 1= ln� at criticality
[20]. Because of smaller corrections to scaling, we used the
spatial dependence of the correlation function for the
quantitative analysis.

We finally determine the critical exponent #. By choos-
ing N� � 5�Nx�

z, we again reduce the two-parameter scal-
ing to a one-parameter one and can employ the same
procedure as for the classical Ising model [21]. From the
scaling ansatz hmni � N�n%=#

x �n
�K � Kc�N
1=#
x �, it fol-

lows that

2 ln
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The derivatives of hmni with respect to K can be calculated
from the correlation function

@hmni
@K

��������Kc

� hmn�xiKc � hmniKch�xiKc �: 
mn�; (8)
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 10  20  30  40  50  60  70

〈 σ
x,
τ 
σ x

+
r,
τ 
〉

r

FIG. 3. Decay of the spin-spin correlation h�x;��x�r;�i at the
critical point for � � 0:6. The size of the lattice is Nx � 140 and
N� � 105. The curve shows the best fit to the data points in the
interval 10 � r � 70.
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where �x denotes the quantity �x �
P
x;��x;��x�1;�.

Results for #, obtained from fits such as shown in Fig. 5,
are listed in Table I. The errors due to the uncertainty in z
were estimated from simulations with system sizes N� �
5�Nx�

z, using both z � 1:98 and z � 2. Within error bars
there is no dependence of the critical exponents on the
dissipation strength.

To test if our choice of the third parameter in the action
in Eq. (3)—the nearest neighbor coupling �—affects the
values of the critical exponents, we repeated the simula-
tions for � � � 1

2 ln
tanh�0:1�� at � � 0:6 and found con-
sistency with the previous results. Note that when the
Hamiltonian of the Ising model in a transverse field con-
tains the coupling to the heat bath, � is an independent
parameter. We finally checked that our numerical results do
not depend on the aspect ratio by increasingN�=�Nx�z from
5 to 20 and used two different random number generators
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FIG. 5. Plot of 2 ln
m2� � ln
m4� as a function of lnNx at
� � 0:6 and fixing N� � 5�Nx�

z. The quantity 
mn� is defined
in Eq. (8), and according to Eq. (7) the slope of the fitted line
gives 1=#.
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TABLE II. Comparison of exponents obtained by our simula-
tions and the values predicted by the ' expansion. The values of
# and z are averages of the various estimates listed in Table I.
The sum z�  was determined for � � 0:6 only.

Simulation One loop Two loop

# 0:638	 0:003 0.583 [24] 0.633 + O�'3� [25]
 0:015	 0:020 0 0.020 + O�'3� [24]
z 1:985	 0:015 2 1.980 + O�'3� [24]

z�  2:00	 0:01 2 2 [24]
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[22,23] to rule out the only remaining possible sources of
systematic errors.

We now compare these result with the predictions from a
dissipative n-component �4 field theory [24,25] in an
expansion in ' � 2� d (the one-dimensional Ising chain
corresponds to n � 1 and ' � 1), which is based on their
result that the dissipation strength does not renormalize to
all orders in '. The agreement with the simulation shown in
Table II is very good, but may deteriorate with higher order
terms, as even the ' expansion of the standard �4 theory is
asymptotic in nature and reliable exponents cannot be
obtained without a Borel-Padé analysis [26].

We believe that for the first time we have been able to
carry out a precise simulation of an extended dissipa-
tive quantum system and have made progress towards
the understanding of quantum criticality in the presence
of dissipation. An intriguing problem that can be ana-
lyzed by the present method is the criticality of a
�0� 1�-dimensional transition embedded in the higher
dimensional system discussed in the context of an array
of resistively shunted Josephson junctions [6,7] and the
quantum theory of the smectic metal state in stripe phases
[27]. It is remarkable, however, that a floating phase arises
naturally in the problem of a dissipative Josephson junction
array, where the states of �0� 1�-dimensional power law
phases can slide past one another.
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