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Hybrid Phase at the Quantum Melting of the Wigner Crystal
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We study the quantum melting of the two-dimensional Wigner crystal using a fixed node quantum
Monte Carlo approach. In addition to the two already known phases (Fermi liquid at large density and
Wigner crystal at low density), we find a third stable phase at intermediate values of the density. The third
phase has hybrid behaviors in between a liquid and a solid. This hybrid phase has the nodal structure of a
Slater determinant constructed out of the bands of a triangular lattice.
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The physics of a system of N electrons confined on a
two-dimensional surface S is a textbook problem at the
root of a very large body of literature. Two competing
energies, electrostatic and kinetic, give rise to a rich phase
diagram. The physics is controlled by the dimensionless
parameter rs � m�e2=� �h2	

�������

n

p
� which is the ratio of the

average distance between electrons over the effective Bohr
radius (e is the electronic charge, 	 the dielectric constant,
m� the effective mass, and n � N=S the electronic den-
sity). At large density (low rs), the kinetic energy domi-
nates and the system is in a Fermi liquid phase [1]. Since
the work of Wigner [2] in 1934, it is also known that, at low
density (large rs), the Coulomb repulsion dominates and
the electrons crystallize onto a (Wigner) triangular crystal
[2,3]. In their pioneering work in 1989, Tanatar and
Ceperley [4] were able to locate that the quantum melting
of the crystal occurs for a critical value of rs � 37� 5.
Their work, which used a fixed node quantum Monte Carlo
[5] (FN-QMC) technique, was followed by more precise
numerics [6] and a better description of the liquid phase
[7,8] that included backflow corrections.

This simple picture of a, presumably first order, direct
transition between the solid and the liquid phase is to be
contrasted with other aspects of the physics of the Wigner
crystal which show more complex behaviors. For instance,
its magnetism is believed to include a spin liquid phase in
addition to the ferromagnetic phase found at very large rs
[9]. The fermionic statistics of the electrons is also known
to play a crucial role for rs � 60, where the melting of the
bosonic Wigner crystal occurs [10]. Also, the classical
melting [11–13] (as a function of temperature) occurs in
two steps. The system first loses its translational order but
retains some orientational order (hexatic phase [13]), while
at higher temperature all order disappears. The classical
melting has been studied on electrons on a helium surface
[14] (where the additional coupling to the helium degrees
of freedom gives rise to interesting physics) as well as in
semiconductor heterostructures in a high magnetic field
[11]. The possibility that the quantum melting of a crystal
would also take place in two steps, leading to a highly
correlated intermediate phase, had been discussed as early
as 1969 by Andreev and Lifshitz [15], who proposed that a
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liquid of defects would exist together with the crystal
state. This proposal has been revisited recently in small
systems using exact diagonalization techniques [16].
Another interesting proposal includes the possibility of
having bubbles or stripes of one phase inside the other [17].

In this Letter, we study a new phase which is a hybrid of
a liquid and a solid using a FN-QMC technique similar to
the one used in [4]. The FN-QMC approach is a very
powerful tool to tackle this problem, but it is of primary
importance to understand the nature of the approximations
which it involves. The method lies halfway between a
black box and a variational approach. Technically, the
FN-QMC algorithm is fed with a wave function, called
the guiding wave function (GWF), that has to be given
explicitly, and that should be close to the ground state of
the system. The FN-QMC algorithm modifies the GWF to
become as close as possible to the ground state of the
system, given the constraint that the sign of the wave
function remains unchanged at every point of the Hilbert
space. The method gives the best wave function for a given
structure of the nodes of the GWF and is in this sense
variational [18]. Our main result is summarized in the
stability diagram, Fig. 1, where the energies of the differ-
ent phases (i.e., associated with the different GWFs) are
plotted as a function of rs. The hybrid phase is found to be
stable in the (critical) region r�s < rs < r��s with r�s � 30
and r��s � 80.

Model.—We consider a system of N spinless electrons
on a square Lx 	 Ly grid with periodic boundary condi-
tions whose Hamiltonian is given by

H � 
t
X

h ~r; ~r0i

cy~r c~r0 �
U
2

X

~r�~r0
V� ~r 
 ~r0�n~rn~r0 � �: (1)

The operator cy~r (c~r) creates (destroys) an electron on point
~r with the standard anticommutation relation rules. The
sum

P
h ~r; ~r0i is done on the nearest neighbor points on the

grid and t is the corresponding hopping amplitude. The
density operator reads n~r �cy~r c~r. U is the effective strength
of the interaction. The two-body interaction V�~r� is ob-
tained from the bare Coulomb interaction using the Ewald
summation techniques to avoid finite size effects, and reads
1-1  2005 The American Physical Society
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FIG. 1. Energy difference Eliquid 
 Ecrystal (circles) and
Ehybrid 
 Ecrystal (triangles) as a function of rs for 72 electrons
in a 48	 84 grid. Inset: energies of the three phases at � � 1=56
and U � 20 (rs � 42:2) as a function of the number of particles
up to 200 electrons in a 80	 140 grid. From top to bottom:
liquid, crystal, and hybrid phase. Energies are in units of 2
N�t.
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V� ~r� �
P

~L
1

j~r� ~Lj
Erfc�kcj ~r � ~Lj� � 2


LxLy

P
~K�~0

1
j ~Kj

Erfc�j ~Kj=

�2kc�� cos� ~K � ~r�. In the previous equation, kc is a (irrele-
vant) cutoff. The vector ~L takes discrete values ~L �

�nxLx; nyLy� with nx and ny integer numbers. The vector ~K
also takes discrete values, ~K��2
Lx

nx;
2

Ly

ny� and �nx;ny��

�0;0�. The complementary error function is Erfc�r�� 2���



p 	
R
1
x e
t2dt. In order to assure electrostatic neutrality, we add

a positive continuous background �=N � 4t � U ~V�~0� 

2U�

����



p
=kc 
 2Ukc=

����



p
, where � � N

LxLy
is the average

electronic density and ~V�~r� � V�~r� with the restriction
that the sum over ~L does not includes the null vector.
The jellium allows us to make contact with the continuous
model at low filling factor. However, it is merely a constant
term, and the phase diagram cannot depend on its presence
in any way. All energies in the problem are measured in
units of 2
N�t. The rs parameter for this model reads rs �
U=�2t

�������

�

p
�. In our numerics we have used � � 1=56 and

� � 1=780. Standard two-dimensional gas in GaAs heter-
ostructures where the underlying grid is given by the Ga
and As atoms corresponds to � � 1=1000 or � � 1=10 000
for the most diluted ones. For these filling factors, only the
bottom of the one-body band is filled, and the noninteract-
ing dispersion relation is almost parabolic (in both real 2D
gas and our tight-biding model). Formally, Eq. (1) tends to-
ward the continuous model studied in Ref. [4] when � � 1
(provided our energies are multiplied by 2=r2s). In order for
the Wigner crystal to fit into the system without distortion,
we chose Ly �

���
3

p
Lx and N � 2P2 with P integer. The

electrons in our study are fully spin polarized, which
corresponds to a system with a strong in-plane magnetic
field. However, our results also extend to zero field systems
since at rs � 20 the polarized fluid is more stable than the
nonpolarized one [6,7]. Last, we have added a very small
04680
disorder
P

~rv~rn~r in order to lift the degeneracies of the
noninteracting problem. v~r are independent and uniformly
distributed inside �
W=2;�W=2�. We choose W � 10
3

corresponding to an extremely large ratio l=�F � 107 of
the mean-free path l over Fermi wavelength �F. We ex-
plicitly checked that our results are insensitive to the
presence of this disorder.

FN-QMC Method.—The operator e
Ht is applied sto-
chastically to an initial GWF in order to project it to the
exact ground state. Our implementation is based on the
Green function Monte Carlo algorithm for lattice
Hamiltonians introduced in [19]. Important sampling [20]
and fixed node (FN) are implemented as in [18] by replac-
ing H by an effective Hamiltonian HFN that depends on the
GWF. HFN forbids the sign of the wave function to change.
The energies calculated with HFN are larger than the one of
the true ground state but smaller than the variational energy
associated with the guiding wave function [18]. At � � 1,
the technique is equivalent to the continuous fixed node
diffusive Monte Carlo algorithm used in [4]. The algorithm
to update the Slater determinants can be found in [21]. By
sampling directly the time spent by the walkers at one point
of the Hilbert space using the algorithm described in [19],
we can use arbitrary small time steps and effectively work
in continuous (imaginary) time. Instead of using branch-
ing, the control of the walkers population is done using a
fixed number of walkers and the reconfiguration algorithm
introduced by Sorella [22]. This algorithm allows one to
avoid the bias introduced in the branching technique by
artificially controlling the walker population. Quantum
averages of physical quantities h� � �i are calculated using
the forward walking technique [22], and hence do not
suffer from the bias of mixed estimates. A typical point
for 72 particles involves 20 independent Monte Carlo runs
with 5000 walkers each.

Guiding Wave Functions.—The GWFs used in our cal-
culations are Slater determinants multiplied by Jastrow
functions,

�� ~r1; ~r2; . . . ; ~rN� � Det�"i�~rj��
Y

i<j

J�j~ri 
 ~rjj�: (2)

The Jastrow part takes Coulomb interaction into account
by introducing correlations between electrons. It has no
nodes, and thus is irrelevant in the FN-QMC results. We
use modified Yukawa functions [23], J�r� � exp�aA�rs�

r 	

�1
 e
B�rs�r=a��, where a � 1=
�������

�

p
is the average dis-

tance between electrons. A�rs� and B�rs� are (optimized)
variational parameters. We checked that the FN-QMC
results are not sensitive to the choice of the Jastrow func-
tion. The Slater determinant of one-body wave functions,
Det�"i�~rj�� enforces the antisymmetric nature of the fer-
mionic wave function and is responsible for the nodal
structure of the GWF. The GWFs used in the literature
are constructed out of plane waves "i� ~rj� / ei ~ki� ~rj for the
liquid GWF �liq [in practice, the plane waves are obtained
by diagonalizing Eq. (1) with U � 0]. For the crystal GWF
1-2
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FIG. 2. Energy of the liquid (circle, A � 6:0, B � 2:25), hy-
brid (triangle, A � 4:9, B � 2:58, U� � 0:3), and crystal
(square, A � 4:9, B � 2:5, d0 � 2:95) phases as a function of
imaginary time t for 72 electrons in a 48	 84 grid at U � 20
(rs � 42:2). Inset: variational energy of the hybrid phase as a
function of U� at U � 15 (rs � 31:67 upper panel, A � 4:7,
B � 2:3) and U � 30 (rs � 63:33 lower panel, A � 5:7, B �
2:9). Energies are in units of 2
N�t.
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FIG. 3. �2E�rs� 
 c1rs�=r1=2s as a function of rs for 72 elec-
trons in a 180	 312 grid. The curves for the liquid (circles),
crystal (squares), and hybrid phases (triangle) can be compared
directly with Fig. 2 of [4]. Inset: Comparison of our result with
previous calculations for the crystal phase. �2E�rs� 
 c1rs�=r1=2s

is plotted as a function of rs. The curves show our data for 72
electrons in a 180	 312 grid (squares), the data of Ref. [4] for
56 electrons (diamonds), and the more recent data of Ref. [6] for
56 electrons (triangles).
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�cry, localized orbitals "i�~rj� / e
�~rj
 ~ui�
2=d2

0 are used.
Here the ~ui with i 2 f1 . . .Ng stand for the positions of
the electrons in the classical crystal and d0 / a is a varia-
tional parameter. �liq (�cry) provides the exact ground
state of H at very large (low) density.

Hybrid GWF.—Below we give the detailed construction
of a new GWF, �hyb, such that the "i�~rj� are the Bloch
states of a triangular crystal. First, an effective one-body
Hamiltonian Heff is constructed for an effective hole in a
periodic potential given by a classical Wigner crystal,

Heff � 
t
X

h ~r; ~r0i

cy~r c~r0 
 U�
X

~r

W� ~r�n~r; (3)

where the one-body potential is W�~r� �
PN

i�1 V�~r 
 ~ui�.
The singularity of W�~r� at ~r � ~ui has been removed by
setting W� ~ui� � W� ~ui � �1; 0��, and we checked that our
results are unaffected by this choice. In a second step, we
take advantage of the presence of the underlying grid and
Heff is numerically diagonalized using Lanczos algorithm.
The N orbitals of lowest energy "i�~r� (1 � i � N) are then
used to construct the Slater determinant. U� is a variational
parameter.

The underlying idea behind the construction of �hyb is
to put on the same level the melting of the Wigner crystal in
real space (as the density is increased) and the destruction
of the Fermi sea in momentum space (as the density is
decreased). �hyb allows for an interpolation between mo-
mentum space (U� � 0) and real space (U� � 1). The
available values of momentum ~k are taken within the first
Brillouin zone, and hence, the liquid-hybrid transition can
be viewed as an instability of the shape of the Fermi surface
that goes from a circular to a hexagonal form. The sym-
metry is broken at this transition, but it is only in a second
step that larger values of j ~kj will come into play, allowing
the "i� ~rj� to get localized and the actual crystallization to
take place. This transition in two steps, where first the
direction of ~k and second its absolute value are affected,
is reminiscent of the hexatic phase predicted in the classi-
cal melting.

Stability of the Hybrid Phase.—Figure 1 shows the
energy differences Eliq 
 Ecry and Ehyb 
 Ecry as a func-
tion of rs for a system of 72 electrons in a 48	 84 grid.
These energy differences are very small, less than 0.1% of
the total energy of the system. rs � 40, where Eliq 


Ecry � 0 would be the critical value or rs in the absence
of the hybrid phase [4]. However, we find that, for 30 <
rs < 80, the hybrid phase has a smaller energy than both
the liquid and the solid phase. Around r�s � 30 we find a
jump of U� from zero to U� � 0:3 [a value which corre-
sponds to the splitting of the lowest energy band of
Eq. (3)]; see the inset of Fig. 2. U�=U � 0:015 up to r��s �
80, above which the crystal phase becomes more stable
than the hybrid phase. Finite N corrections shown in the
inset of Fig. 1 at rs � 42:2 are of the order of �0:01 but
keep the energy differences almost invariant. We note that
04680
although the variational energy of the hybrid phase is lower
than the one of the liquid it is still higher than the crystal
variational energy. The FN-QMC treatment is necessary to
show the stability of the hybrid phase, as shown in Fig. 2.
To make contact with the calculations of [4,6], we have
repeated these calculations for a more diluted system � �
1=780, where the role of the underlying grid is negligible.
The results are plotted in Fig. 3 in the same way as Fig. 2 of
[4] (with the Madelung constant c1 � 
2:2122). In the
inset of Fig. 3 we have reported the Wigner crystal data of
[4,6] for comparison and find a good quantitative agree-
ment with the latter (finite size corrections between system
with 72 and 56 particles are of the order of the size of the
1-3
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FIG. 4 (color online). Density-density correlation function for
a system of 72 electrons in a 48	 84 grid. g�~r� measures the
probability of finding a particle in �X; Y�, knowing that one
electron lies in the middle of the sample. From left to right,
the liquid, crystal, and hybrid phases are represented at U � 20
(rs � 42:2).
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symbols and favor the smallest systems, see inset of Fig. 1).
We note that, around rs � 40, the energy difference be-
tween the liquid and the hybrid phase (�0:01) is about
three times as big as the energy that could be gained on the
liquid phase using backflow corrections (�0:0037 at rs �
30 in [7]).

Nature of the Hybrid Phase.—It is important to realize
that, as described above, the nature of the intermediate
phase is by construction something hybrid, being made
of (delocalized) Bloch waves, yet having already the sym-
metry of the Wigner crystal. More insight can be gained by
computing the electronic density hn~ri (not shown) which is
the superposition of peaks at the classical positions (the ~ui)
of the electrons in the crystal over a small background. At
rs � 42, the background is found to contain approximately
35% of the electrons while the rest lies in the peaks of the
crystal. This amount is stable upon increasing N up to N �
200. Although the total energy of the hybrid phase is below
those of the liquid and crystal, both its kinetic and electro-
static energies lie in between those of the liquid and solid.
Figure 4 shows the density-density correlation function
(roughly measuring the probability of finding an electron
at point ~r knowing that an electron is at point ~0), g� ~r� �

LxLy

N�N
1� hc
y
~r cy~0c~0c~ri for the three phases. ghyb� ~r� for the hy-

brid phase is intermediate between a liquid and a crystal.
The value of ghyb�~r� at its peaks is only twice as big as in
the valley to be compared to a factor 15 at rs � 100. In fact
a very good fit is obtained with ghyb� ~r� � 0:35gliq� ~r� �
0:65gcry�~r�. Upon increasing rs, the percentage of the back-
ground decreases smoothly (�25% at rs � 50, �10% at
rs � 60). We conclude by noting that, while a symmetry is
broken at the liquid-hybrid transition (therefore establish-
ing it as a phase transition), no such thing exists when the
system goes from the hybrid phase to the crystal one.
Hence, the two phases are somehow on the same footing
as a gas and a liquid, and it is not clear at this moment
04680
whether there is a crossover or a phase transition between
one and the other.
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