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Nonlinear Screening Theory of the Coulomb Glass
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A nonlinear screening theory is formulated to study the problem of gap formation and its relation to
glassy freezing in classical Coulomb glasses. We find that a pseudogap (’’plasma dip’’) in a single-particle
density of states begins to open already at temperatures comparable to the Coulomb energy. This
phenomenon is shown to reflect the emergence of short-range correlations in a liquid (plasma) phase, a
process which occurs even in the absence of disorder. Glassy ordering emerges when disorder is present,
but this occurs only at temperatures roughly an order of magnitude lower. Our result demonstrate that the
formation of the plasma dip at high temperatures is a process distinct from the formation of the Efros-
Shklovskii pseudogap, which in our model emerges only within the glassy phase.
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The interplay of interactions and disorder remains one of
the most important open problems in condensed matter
physics. These effects are most dramatic in disordered
insulators, where the pioneering work of Efros and
Shklovskii (ES) [1] emphasized the fundamental signifi-
cance of the long-ranged nature of Coulomb interactions.
This work presented convincing evidence that at T � 0 a
soft ‘‘Coulomb gap’’ emerges in the single-particle density
of states (DOS) which, in arbitrary dimension d, reads

g�"� � "d�1: (1)

From a general point of view this result is quite surpris-
ing. It indicates a power-law distribution of excitation
energies, i.e., the absence of a characteristic energy scale
for excitations above the ground state. Such behavior is
common in models with broken continuous symmetry,
where it reflects the corresponding Goldstone modes, but
is generally not expected in discrete symmetry models,
such as the one used by ES. Here, it may reflect unusually
strong frustration behavior inherent to Coulomb interac-
tions in the presence of disorder.

Indeed, the ES model seems to display several glassy
features characterized by a large number of metastable
states and slow relaxation, as clearly seen in many simu-
lations [2–5], and even in some experiments [6].
Interestingly, a precursor of the gap begins to appear
[4,7] already at relatively high temperatures, while glassy
ordering emerges only at much lower T. Similar behavior
has been identified even in absence of randomness [8]. Is
the physics of the Coulomb gap thus related or unrelated to
the glassy features of the system? The close connection
between the two phenomena was recently demonstrated [9]
for a mean-field model of interacting disordered electrons
in the limit of large coordination, but the issue remains
unresolved for Coulomb systems in finite dimensions
where the ES theory applies.
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To address these issues we observe that the principal ES
result—the emergence of a power-law spectrum—is not
specific to low dimensions. Therefore, to investigate its
physical origin and its relation to high temperature anoma-
lies, we use the approach which is controlled in high spatial
dimensions. Our main conclusions are as follows: (i) A
nonuniversal pseudogap in the DOS (we call it the ‘‘plasma
dip’’) begins to emerge at temperatures of the order of the
Coulomb energy. It reflects strong short range correlations
in the Coulomb plasma, a feature that is most pronounced
in the absence of disorder [8], but is unrelated to the
Coulomb gap of ES. We obtain simple analytical results
that in quantitative detail describe the temperature evolu-
tion of the plasma dip, in excellent agreement with all
existing simulations. (ii) The high temperature plasma
(fluid) phase becomes unstable to ergodicity breaking at
temperatures typically 10 times lower, as the system enters
a glassy state. We argue that a true ES pseudogap emerges
only within the glassy (nonergodic) phase, and that its
scale-invariant form reflects the marginal stability of such
a glassy state.

Nonlinear screening theory.—The simplest many-body
approach to Coulomb systems, the Debye-Huckel theory,
provides a linear screening description equivalent to a
Gaussian approximation for the plasmon mode. This the-
ory, however, fails badly at low temperatures, where non-
linear effects lead to strong correlations in the plasma
phase. Such a Gaussian theory is unable to describe glassy
freezing even in the well-understood limit of infinite range
interactions. To overcome these difficulties, we use a sim-
ple theory of nonlinear screening given by the classical
limit of the extended dynamical mean-field theory [10]. In
this approach, the environment of a given site is approxi-
mated by free collective modes (plasmons in our case), the
dispersion of which is self-consistently determined. In
recent work, a version of this method has been successfully
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applied to the problem of self-generated glassiness [11] in
systems with frustrated phase separation [12] without dis-
order. Here, we apply it to the classical Coulomb glass
(CG) model [1] given by the Hamiltonian

H �
X
i

	ini �
1

2

X
ij

Vij�ni � K��nj � K�; (2)

where ni � 0; 1 is the electron occupation number, and 	i
is a Gaussian distributed random potential of variance W2.
We express the Coulomb interaction Vij � "0=rij in units
of the nearest-neighbor repulsion "0, and the intersite
distance rij in units of the lattice spacing. We adopt the
following notation throughout the Letter. For vectors and
matrices in the replica space we use bold font and the hat
symbol correspondingly. In the replica symmetric (RS)
ansatz a matrix Ô � fOc;Og is parametrized by its con-
nected part Oc and its off-diagonal part O. Thus for the
density-density correlator we use q̂ � f�; qg. Thermal and
disorder averages are denoted as hOiT and �Odis, respec-
tively, and hOi � �hOiTdis.

To derive the desired self-consistency equations, we
average over disorder using the standard replica method
[9] and use a cavity construction [9,10], integrating out the
degrees of freedom on all sites except the considered one.
The resulting contribution to the local effective action is
computed in the Gaussian approximation, giving a term of
the form � 1

2�n�̂�n, where �n � n� hni. By requiring
that the local density-density correlator q�� � h�n��n�ic
is correctly reproduced by the effective action, one obtains
a self-consistency condition. We get

q�� � h�n��n�icSeff ; Seff � �
1

2
�n ~̂��n;

q̂ �
X
k

�q̂�1 � �̂� �Vk�
�1;

(3)

where ~��� � ��� � �2W2, and Vk is the Fourier trans-
form of the interaction potential. In case of the RS solution
~̂� � f�c; �

2W2
effg, where Weff �

��������������������������
W2 � ��2�

p
is the re-

normalized disorder.
Fluid solution.—To examine the evolution of the system

in the high temperature phase we first examine the RS
solution. In the n ! 0 replica limit we get

q �
1

4

Z
D�xtanh2

�
1

2
x�Weff

�
; (4)

where D�x � �2���1=2 expf�x2=2gdx. The self-
consistency condition becomes

�� q �
1

4
; � �

X
k

���1 � �c � �Vk�
�1;

q � �q��2 � ��
X
k

���1 � �c � �Vk�
�2:

(5)
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The Eqs. (4) and (5) can easily be solved numerically for
the parameters �; q;�c;�; Weff , to calculate the DOS
function g���, to examine the stability of the RS solution,
and to compute the entropy S. The above equations are
written for the half-filled case in the absence of charge
ordering. Generalization to uniformly ordered phases is a
standard procedure [13], where the ordering transition is
signaled by a divergence in �k � ���1 � �c � �Vk�

�1 at
the ordering vector k � Q. For simplicity, most of our
results are written in the homogeneous phase at half filling
and that will be assumed unless stated otherwise.

Density of states.—For the CG model, the single-particle
DOS (tunneling DOS) function g��� is simply given by the
distribution of the local fields (energies) �i � @H=@ni:

g��� �
X
i

h���� �i�i: (6)

Integrating out all sites except one, we derive an expression

for g��� in terms of the local effective field ~̂�. The final
result for the RS solution reads

g��� �
Z

D�x
�������������
2��c

p cosh12��

cosh12 x�Weff

� exp
�
�

1

2�c

�
1

4
�2

c � ���� x�Weff�
2

	

: (7)

In the cavity method language [14] this result can be
interpreted as the Gaussian distribution of the cavity fields
(different from the local fields) of variance Weff , modified
by the (Onsager) self-reaction term representing the
plasma correlations.

We get insight into the behavior of the DOS by consid-
ering some analytically solvable limits. At T ! 0, the DOS
remains finite at the Fermi level, though it can be exponen-
tially small for weak disorder. This shows that the fluid
(RS) solution does not capture the physics of the true ES
gap, which emerges only within the glassy phase. On the
other hand, as long as the RS solution is stable, a large
plasma dip may develop, but it will have no direct relation
to the glassy physics or the ES gap. It reflects strong short-
range correlations in the Coulomb plasma (fluid) phase,
which are suppressed at large disorder. Here, the RS DOS
reduces to the bare disorder distribution. In the opposite
limit of vanishing disorder Weff ! 0 the DOS expression
simplifies, and for an arbitrary filling reads

g��� �
�������������
2��c

p exp
�
�

1
4 �

2
c � �2�2

2�c

�

�

�
cosh

1

2
��� �2K � 1� sinh

1

2
��

	
: (8)

To support the validity of our formulation, we compare
our analytical results with available numerical simulations.
In Fig. 1 (top panel), we examine the situation studied in
Ref. [7], where calculations were done for a 3D CG on a
cubic lattice, for a set of temperatures in the fluid phase.
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The lowest temperature is very near the glass transition
temperature (see our phase diagram, Fig. 2). As we can see,
our theory captures in surprisingly quantitative detail the
formation of the plasma dip in the fluid phase. In the past,
this phenomenon has often been confused with the forma-
tion of the true ES gap which, as we argue below, only
emerges within the glassy phase. Finally, we test the limits
of our theory by computing the DOS for the 2D CG in the
absence of disorder. Even in this extreme case, we repro-
duce semiquantitatively exact numerical results of Ref. [8].

Glassy ordering.—To examine the stability of the fluid
phase to glassy ordering, we examine the Baym-Kadanoff
(BK) functional �BK�q̂. This is a functional of the corre-
lator q̂, which yields the exact equations of motion at the
saddle point, where it coincides with the exact free energy.
To obtain our self-consistency conditions, a local approxi-
mation [13] is made on the two particle irreducible part of
�BK. In this formulation, the stability of our fluid RS
solution can be obtained by a standard replica symmetry
breaking (RSB) analysis [15] of the BK functional at the
saddle point. The corresponding RSB instability criterion
takes the form
d=3d=3

FIG. 1 (color online). Our analytical predictions for the single-
particle density of states (solid lines) are found to be in excellent
quantitative agreement with simulation results (dashed lines),
with no adjustable parameters. Shown are results for the three-
dimensional case studied in Ref. [7], corresponding to W �
1=�2

���
3

p
�, and temperatures T � 0:4, 0.2, 0.1, and 0.05 (top

panel), and the two-dimensional model of Ref. [8], correspond-
ing to W � 0, T � 0:1, and K � 0:2. All lines correspond to the
plasma phase, while T � 0:05 is very close to the glass transition
temperature.
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2
dis

� 0: (9)

Here, �ij is the density-density correlation function com-
puted for a fixed realization of disorder, i.e., �ij �

h�ni�njiT � h�niiTh�njiT . The left-hand side of Eq. (9)
is nothing but 1=

P
j��

2
ijdis, the inverse of the glass suscep-

tibility, a quantity which diverges at the transition. In terms
of the RS solution the RSB condition reads

q
�

�
1

16

Z
D�xcosh�4

�
1

2
x�Weff

�
: (10)

As an illustration, we present results for the CG on a 3D
cubic lattice, and in Fig. 2 we plot the corresponding phase
diagrams obtained by numerically solving our self-
consistency conditions. At small disorder and temperature
T � 0:95 (which is in satisfactory agreement with the
exact value [16] Tc � 0:129) the system enters the charge
ordered phase. Stronger disorder suppresses the charge
ordering, and the system can exist either in a liquid phase
(at higher temperature) or in the glass phase (at lower T).
The liquid is separated from the glass by the RSB line, also
known as the Almeida-Thouless [15] line. We emphasize
that the ordering temperature we predict is roughly an
order of magnitude smaller than the Coulomb energy, in
remarkable quantitative agreement with all available simu-
lation results [3–5,8].

This interesting fact can be traced down to the screening
of the Coulomb interaction. Indeed, the overall energy
scale characterizing the screened Coulomb potential
Vscr�r� � "0 expf�r=‘scrg=r is roughly an order of magni-
tude smaller than the bare Coulomb energy. The corre-
sponding screening length ‘scr � ����1 ��c�=��"0�

1=2

[shown for W � �2
���
3

p
��1 in the inset of Fig. 2] decreases

(albeit weakly) with temperature and remains short
throughout the fluid (RS) phase. This observation also
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FIG. 2 (color online). Three-dimensional Coulomb glass phase
diagram. The full horizontal line indicates the RSB instability
and the dotted line shows where the RS entropy turns negative.
The screening length in the inset is plotted for the same disorder
and the range of temperatures (fluid phase) as in Fig. 1.
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makes it clear why the true ES gap cannot emerge in the
absence of glassy ordering. The screening mechanism
remains operative throughout the (ergodic) fluid phase,
and thus the long-range character of the Coulomb interac-
tion, which is crucial for the ES argument, remains inop-
erative. In contrast, within the glass phase, following the
arguments from Ref. [9], we expect the relevant zero-field
cooled compressibility to decrease and vanish at T � 0.
This mechanism opens a route for the screening to be
suppressed at low temperatures and the true ES gap to
emerge.

To provide further evidence of the instability of the fluid
phase to glassy ordering, we also calculate the entropy in
the fluid (RS) solution, which takes the form

S �
Z

D�x ln
�
2 cosh

�
1

2
x�Weff

�	

�
1

2

X
k

ln�k �
1

2
ln�� 2��Weff : (11)

It is well known that for standard mean-field glass models,
the RS replica theory predicts negative entropy at T � 0,
while the lower bound for the glass transition temperature
can be set where the RS entropy changes sign. It is easy to
show from Eq. (11) that our RS entropy proves strictly
negative at T � 0 as well. In Fig. 2 we also plot (dashed
line) a lower bound for the RSB instability line where the
RS entropy turns negative, providing further evidence that
the fluid phase cannot survive down to T � 0.

The glass phase and the Efros-Shklovskii gap.—In this
Letter we do not explicitly examine the RSB solution of
our model. Nevertheless, we follow arguments similar to
those of Ref. [9] and use the large disorder asymptotics of
the glass transition line to determine the power-law form of
the T � 0 Coulomb gap in the glassy phase. At W � "0,
we find

TG � "1��1="�
0 W��1="�; (12)

where the exponent " is identical to that predicted by ES
for the T � 0 DOS in the CG

g��� � "�1�"
0 �": (13)

For an interaction of a general power-law form V�r� �
"0=ra, the ES argument predicts " � �d� a�=a in arbi-
trary dimension d. The asymptotic regime, however, sets in
at larger values of disorder, not shown in the Fig. 2.

Let us explain the importance of Eq. (12). We have seen
that for W � 0 the DOS remains finite in the RS fluid
phase, so a true ES pseudogap can emerge only due to
glassy ordering. For another electron glass model, the work
of Ref. [9] has established that the emergence of a true
pseudogap at T � 0 directly follows from the marginal
stability of the glassy state, and that its form also deter-
mines the large disorder asymptotics of TG�W�. Given the
close similarity of our mean-field equations for the CG
04640
model to those examined in Ref. [9], we expect the same
mechanism to apply here as well. Using the expected form
of the ES gap, we can estimate the glass transition tem-
perature as the energy scale Egap characterizing the
‘‘width’’ of the gap that opens in the low temperature
phase. We find Egap � "1��1="�

0 W��1="�, coinciding with
Eq. (12). This result presents strong evidence in favor of
the close relation between glassy ordering and the emer-
gence of the ES gap.

In conclusion, we have formulated a simple many-body
theory that is able to clarify the relation between the finite
temperature formation of the Coulomb gap and the emer-
gence of glassy ordering in disordered Coulomb systems in
finite dimensions. This nonlinear screening approach is
flexible enough to allow for future extensions to quantum
models [9,17] and to study the role of Anderson and Mott
localization [18] in Coulomb systems.
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