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XY Spin Fluid in an External Magnetic Field
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A method of integral equations is developed to study anisotropic fluids with planar spins in an external
field. As a result, the calculations for these systems appear to be no more difficult than those for ordinary
homogeneous liquids. The approach proposed is applied to the ferromagnetic XY spin fluid in a magnetic
field using a soft mean spherical closure and the Born-Green-Yvon equation. This provides an accurate
reproduction of the complicated phase diagram behavior obtained by cumbersome Gibbs ensemble
simulation and multiple histogram reweighting techniques.
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Spin fluids are examples of many body systems show-
ing a rich variety of phases in the global phase diagram
[1–4]. Besides gas-liquid (G-L), liquid-liquid (L-L), and
paramagnetic-ferromagnetic (P-F) phase transitions, tri-
critical, critical end, and triple point behavior is observed.
Under special (van Laar) conditions, an unsymmetrical
tricritical point exists additionally [5]. This complexity
arises due to a coupling between spin and spatial interac-
tions. Similar phase diagrams are found in binary mixtures
[6–10] with their demixing and G-L transitions, spin lattice
gas models [11,12], mixtures of 3He-4He with the super-
fluid and demixing transitions [13–15], and others.

The properties of spin fluids were studied using mean
field (MF) theories [1–4], more accurate integral equation
(IE) approaches [5,16–20], and Monte Carlo (MC) simu-
lation techniques [4,16,19,21–24]. Different types of mod-
els, such as the well-known discrete 1D spin Ising, or
continuous 2D spin XY and 3D Heisenberg fluids, have
been considered. Despite this, the question concerning the
global phase diagram topology of the XY spin fluid includ-
ing the influence of an external magnetic field has never
been addressed. Moreover, the IE approach has been re-
stricted either to simplified (ideal) Heisenberg fluids [16–
20] or to Ising models [5].

Surprisingly, up to now there have been no attempts to
develop the IE approach for the XY spin fluid model. This
model may play a crucial role in the description of super-
fluid transitions in pure 4He and its mixtures in bulk or in
media such as porous gold [15] or silica aerogel [25]. It is
generally believed [25] that the superfluid transition in 4He
belongs to the classical 3D XY model universality class
(here 3D relates to the dimensionality of spatial coordi-
nates). On the other hand, the fluid of particles with em-
bedded XY spins can be treated as one of the simplest
models of disordered continuum systems exhibiting ferro-
magnetic behavior.

The presence of spin interactions and external fields
destroys the orientational homogeneity of the fluid, pro-
ducing nonuniformity or anisotropy in the one-body den-
sity. Within the standard IE approach this leads to the
necessity of performing very complicated joint calcula-
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tions for one- and two-body distribution functions on the
basis of the coupled set of the anisotropic Ornstein-Zernike
(AOZ) equation, a closure relation, and the first equation
of the Born-Green-Yvon (BGY) hierarchy [26]. Such
calculations result in unresolvable numerical difficulties
because of the restricted capabilities of modern super-
computers. Existing IE developments for Ising [5] and
Heisenberg [16–20] systems are not applicable to the XY
fluid, since neither can it be mapped onto a binary non-
magnetic mixture nor its anisotropic correlations be ex-
panded in spherical harmonics. The specific XY spin
interactions require a separate IE investigation.

Consider an XY spin fluid model with the Hamiltonian

U �
XN
i<j

���rij� � I�rij� � J�rij�si � sj� �H �
XN
i�1

si; (1)

where N is the total number of particles, ri is the 3D spatial
coordinate of the ith body carrying 2D spin si of unit
length, rij � jri � rjj denotes the interparticle separation,
and H is the external magnetic field vector lying like si in
the XY plane. The exchange integral J of ferromagnetic
interactions and the nonmagnetic attraction potential I can
be chosen in the form of Yukawa functions,

J�r� �
�
r
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�
�
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�

�
; I�r� �

J�r�
R

; (2)

where  and � denote the interaction intensity and the size
of the particles, respectively, with R being the ratio defin-
ing the relative strength of J to I. The repulsion � between
particles can be modeled by a more realistic soft-core
(shifted Lennard-Jones) potential [4,5],

��r� �
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26

p
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���
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p
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(3)

rather than by the hard-sphere one.
A complete thermodynamic and magnetic description of

system (1) can be performed in terms of orientationally
dependent one-body ��’� and two-body g�r; ’1; ’2� �
h�r; ’1; ’2� 	 1 distribution functions. The angles ’ are
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referred to spin directions with respect to H, so that
H � s � H cos’ and s1 � s2 � cos�’1 � ’2�. According
to the liquid state theory [26], the total correlation func-
tion h satisfies the AOZ equation which in our case reads

h�r; ’1; ’2� � c�r; ’1; ’2� 	
�
2�

Z
V
dr0

Z 2�

0
d’��’�

 c�jr� r0j; ’1; ’�h�r
0; ’;’2�; (4)

where � � N=V is the particle number density, V is the
volume, and c�r; ’1; ’2� is the direct correlation function
(note that a positionally homogeneous and orientationally
anisotropic system is being investigated).

The AOZ equation (4) must be complemented by a
closure relation. The most general form of it is

g � exp���u	 h� c	 B�; (5)

where u�r; ’1; ’2� � ��r� � I�r� � J�r� cos�’1 � ’2�
with ��1 � kBT being the temperature, and B is the bridge
function. It cannot be determined exactly for any system of
interacting particles, but a lot of approaches exist allowing
us to present it approximately [26]. One way is to use the
soft mean spherical approximation (SMSA) [5,27]

B�r; ’1; ’2� � ln�1	  �r; ’1; ’2�� �  �r; ’1; ’2�; (6)

where  � h� c� �ul. The long-ranged part ul can be
extracted [5] from the total potential u as ul�r; ’1; ’2� �
��I�r� 	 J�r� cos�’1 � ’2�� exp�����r��.

Evaluation of pair correlations from AOZ equation (4)
requires the knowledge of ��’�. The latter is obtained from
the first member of the BGY hierarchy [26],

d
d’

ln��’� �
d
d’

�H cos’� �
�
2�


Z
V
dr

Z 2�

0
d’0��’0�g�r; ’; ’0�


du�r; ’;’0�

d’0
: (7)

Equations (4), (5), and (7) constitute a very complicated
set of coupled AOZ-SMSA-BGY nonlinear integro-
differential equations with respect to h (or g), c, and �.
The main problem in solving it is that the unknowns h and
c depend on up to three variables. This leads to unresolv-
able numerical difficulties, and thus a method is needed to
remedy such a situation.

Any periodic function of two angle variables can be
expanded in sine and cosine harmonics as

f�r; ’1; ’2� �
X1

n;m�0

X
l;l0�0;1

fnmll0 �r�Tnl�’1�Tml0 �’2� (8)

using the orthogonal Chebyshev polynomials Tn0�’� �
cos�n’� and Tn1�’���1

ndTn0�’�=d’� sin�n’�. Expan-
sion (8) can readily be applied to our two-body functions
fh; g; cg � f with the simplification fnmll0 � fnml&ll0 be-
cause they are invariant with respect to the transformation
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�’1; ’2� $ ��’1;�’2� in view of the symmetry of
Hamiltonian (1). Then exploiting the orthonormality
condition

R
2�
0 Tnl�’�Tml0 �’�d’ � tn&nm&ll0 , where tn �

��1� &n0� 	 2�&n0, yields the expansion coefficients

fnml�r� �
1

tntm

ZZ
f�r; ’1; ’2�Tnl�’1�Tml�’2�d’1d’2:

(9)

In terms of these coefficients the AOZ equation (4)
reduces to

hnml�k� � cnml�k� 	 �
X
n0;m0

cnm0l�k��n0m0lhn0ml�k�; (10)

where �nml �
1
2�

R
2�
0 ��’�Tnl�’�Tml�’�d’ are the mo-

ments of ��’�, and the 3D Fourier transform f�k� �R
V f�r� exp�ik � r�dr has been used. The algebraic repre-

sentation (10) looks like the OZ equation corresponding to
a mixture of simple homogeneous fluids of nonmagnetic
particles. This is a very important feature because the
problem can now be solved by adapting algorithms already
known for isotropic systems.

Furthermore, we perform the one-body polynomial
expansion

ln��’� � �H cos’	
X1
n�0

anTn0�’�; (11)

where only cosine harmonics appear due to the property
���’� � ��’�. Then the cumbersome integro-differential
equation (7) is able to be solved analytically,

an �
��
2n

Z
dr

X1
m�0

l;l0�0;1

��1�l	l0�m1lg~nml�r�J�r� (12)

for n � 1, where ~n � n� 1	 2l0, while the coefficient a0
is determined from the normalization 1

2�

R
2�
0 ��’�d’ � 1.

Handling the SMSA closure (5) also presents no diffi-
culties, because for distances r � 21=6� [where ��r� � 0]
we obtain from Eqs. (5) and (6) that c�r; ’1; ’2� �
��I�r� 	 J�r� cos�’1 � ’2��. Taking into account the
equality cos�’1 � ’2� � T10�’1�T10�’2� 	 T11�’1� 
T11�’2�, one finds c000�r� � �I�r� and c110�r� � c111�r� �
�J�r�, while all other c coefficients are equal to zero at r �
21=6�. For r < 21=6�, we should perform a numerical
integration [see Eq. (9)] of the right-hand side of Eq. (5)
in order to obtain the expansion coefficients gnml�r�.

Another important feature is that only a small number
N of harmonics should be, in fact, involved because
the expansion coefficients rapidly tend to zero with in-
creasing N . Then the sums

P
1
n;m can be replaced without

loss of precision by finite ones with n;m � N . In our
case the anisotropic potential is presented by zeroth and
first harmonics [see above the expansion for cos�’1 �
’2�], while a slight anharmonicity (N > 1) in the corre-
lation functions appears due to the nonlinearity of the
closure.
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Once the expansion coefficients are found, all the magnetic and thermodynamic properties of the system are obtained in
a straightforward way. In particular, the magnetization is M � 1

2�

R
2�
0 cos�’���’�d’ � �100, while the pressure P can be

calculated from the virial equation

�P
�

� 1�
1

6
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�2��2
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dr

X
l�0;1

�n1l�m1lgnml�r�


: (13)
The coupled set of OZ-SMSA-BGY equations (5), (10),
and (12) was solved by adapting the algorithm used in
Ref. [5]. The integration in angle variables has been per-
formed by Gauss-Chebyshev quadratures. The number of
harmonics involved was N � 3. A further increase of N
does not affect the solutions. The phase coexistence den-
sities between gas and liquid states has been evaluated by
applying the well-known Maxwell construction to Eq. (13).
The P-F transition has been determined as a boundary
(Curie) curve in the temperature-density plane, where non-
zero (spontaneous) magnetization M � 0 becomes pos-
sible at H � 0. Other computational details are similar to
those of Ref. [5] when solving the Ising IEs. The dimen-
sionless quantities �� � ��3, T� � kBT=, and H� �
H= were chosen in the presentation of the results.

The simulations were carried out using the Gibbs en-
semble MC (GEMC) [28] and multiple histogram re-
weighting (MHR) [29] techniques for evaluating the G-L
and L-L coexistences, while the Binder crossing scheme
[24,30] was utilized to determine the P-F magnetic tran-
sition (at H � 0). Other simulation details are similar to
those reported in Refs. [4,5,24].

We first compare in Fig. 1 the OZ-SMSA-BGY results
for the ideal XY fluid at different external fields H with the
GEMC and MHR simulation data faccording to the clas-
sification of Refs. [3,5], the term ‘‘ideal’’ indicates here a
simplified model with the nonmagnetic attractive inter-
action switched off, I�r� � 0 [see Eqs. (1) and (2)], i.e.,
R � 1g. At H � 0, a tricritical (TC) point separates the
second order P-F magnetic phase transition line from the
first order transition between a P gas and an F liquid. The
H dependence of the G-L critical temperature and density
is nonmonotonic. Samples of the MF binodals are included
FIG. 1. The G-L binodals obtained for the ideal (R � 1) XY
fluid within the OZ-SMSA-BGY approach (full curves) versus
the GEMC (open circles) and MHR (full circles) simulation data.
The P-F transition is plotted by the short-dashed line. The MF
samples are shown by long-dashed curves.
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in Fig. 1 as well to demonstrate the obvious advantage of
the IE theory. These samples were obtained [for I�r� � 0]
on the basis of a soft-core version of the MF theory intro-
duced recently by us in Ref. [4]. Note that contrary to the
theoretical binodals, the GEMC and MHR coexistence
curves break up when approaching the critical regions.
This is because of the appearance of huge density fluctua-
tions which cannot be properly handled within finite simu-
lation boxes. The MHR technique allows us to approach to
critical points more closely (see Fig. 1) and should be
considered as more preferable than the GEMC method.

The OZ-SMSA-BGY and MHR phase diagrams of the
nonideal XY fluid are shown in Figs. 2 and 3 for different
ratios R and magnetic fields H. Four types of phase dia-
gram topology can be identified overall. For large R �
0:415 (type I), the system exhibits an ideal-like behavior
with the existence of a TC point at H � 0 and G-L tran-
sitions at H � 0 for each R [Fig. 2(a)]. At moderate values
0:26<R< 0:415 (type II), the transition between a
P liquid and an F liquid arises at H � 0 additionally to
the transition between a P gas and a P liquid. Here a triple
point (TP) occurs, too, where a rare P gas, a moderately
dense P liquid, and a highly dense F liquid all coexist at the
same T and P [see Figs. 2(b) and 3(a)]. The TPs can exist at
H � 0 as well and describe then the phase coexistence
between a weakly magnetized gas, a moderately magne-
tized liquid, and a strongly magnetized liquid [Fig. 3(b)].
With increasing H, either the G-L (0:376<R< 0:415,
type IIa) or L-L (0:26<R< 0:376, type IIb) critical line
terminates in a critical end (CE) point at some finite H. For
instance, even if R is slightly smaller than the boundary
value RvL � 0:376, namely, R � 0:37, the L-L critical line
ends (type IIb) at some H� � 1 [Fig. 3(a)], while the G-L
FIG. 2. The G-L and L-L binodals of the nonideal XY fluid
within the OZ-SMSA-BGY approach (full curves) versus the
MHR data (circles). The P-F transition is plotted by the short-
(theory) and long- (simulation) dashed curves. The triple point is
represented by the horizontal dashed line.
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FIG. 3. The binodals near (a) and at (b) the boundary value
R � RvL. The G-L and L-L critical points are shown in subset
(b) for different H� as open and full squares, respectively,
connected by dashed curves. The curves meet in the TC point
(star). Other notations are the same as for Fig. 2.
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critical line extends to infinite field. In the special case R �
RvL, the G-L and L-L critical lines merge into the TC
van Laar point at H� � 1:9 [Fig. 3(b)]. For small R �
0:26 (type III), the spatial interaction dominates over the
spin one, preserving the G-L transition, whereas the TC
point at H � 0 transforms into a CE point [Fig. 2(b)].
For H ! 1, the system at any R behaves like a simple
fluid with u�r� � ��r� � I�r� � J�r� (then all the spins
align along H).

As can be seen, the agreement between the theory
proposed and the simulations is quite satisfactory. Slight
deviations appear only in the vicinity of critical points.
This is explained by finite size effects in the simulations
and an approximate character of the SMSA closure used in
the theory. For the latter reason, the classical value � �
1=2 of the critical exponent describing the G-L binodal
behavior j�� �cj � jT � Tcj

� near the criticial point
(�c; Tc) is recovered (in particular, at R�1 and H�0),
instead of the value � � 1=3 known from the renormal-
ization group analysis [31]. On the other hand, the cross-
over to the TC value � � 1=4 can be observed near the
van Laar point at R � 0:376 and H� � 1:9 [Fig. 3(b)].

More precise IE calculations near critical points are pos-
sible provided a more accurate closure is used. For in-
stance, the self-consistent OZ ansatz [7–9] (which in its
present formulation was implemented only for simple iso-
tropic hard-sphere Yukawa systems) can be extended to our
anisotropic soft-core XY fluid by introducing a state de-
pendent function K��; T;H� as a multiplier at the inverse
temperature in the SMSA closure [Eqs. (5) and (6)]. Then
K is determined by the requirement of thermodynamic
consistency between the energy and compressibility routes.
In view of the anisotropy and softness, this leads to a
significant sophistication of the calculations. They go be-
yond the scope of the present Letter and will be considered
elsewhere.

In conclusion, we point out that a novel technique to
study orientationally ordered fluids with planar spins has
been proposed. It combines the standard IE method with
the appropriate expansions of the anisotropic correlation
functions in terms of orthogonal polynomials. This reduces
the calculations to those inherent in a homogeneous mix-
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ture of simple monoatomic fluids and thus presents now no
numerical difficulties. Detailed comparisons with our
simulations have shown that the proposed approach is
powerful enough to give a quantitative description of phase
transitions in the XY spin fluid systems.
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