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Almost Compact Breathers in Anharmonic Lattices near the Continuum Limit
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Certain strictly anharmonic one-dimensional lattices support discrete breathers over a macroscopic
localized domain that in the continuum limit becomes exactly compact. The discrete breather tails decay
at a double-exponential rate, so such systems can store energy locally, especially since discrete breathers
appear to be stable for amplitudes below a sharp stability threshold. The effective width of other solutions
broadens over time, but, under appropriate conditions, only after a positive waiting time. The continuum
limit of a planar hexagonal lattice also supports a compact breather.
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A wide variety of physical systems are described by
anharmonic lattices that on the macroscopic length scale
involve many unit cells, and thus in a first approximation
are modeled using the continuum limit described via par-
tial differential equation(s) (PDE) with the discrete effects
being completely washed away. Since the continuum limit
is singular, and the resulting equations exhibit a number of
surprising features, it is essential to understand the impact
of discreteness on the overall dynamics. In this Letter we
study a class of purely anharmonic lattices (the impact of
harmonic interaction is discussed as well) and show that
such systems support almost-compact breathers over a
macroscopic domain. These energy-storing essentially
nonlinear modes of vibration are of fundamental impor-
tance and of long-standing interest. Although, in principle,
lattices governed by Newton’s laws immediately spread
any information presented over a compactum, we demon-
strate that the effective spread is actually very limited and
the continuum limit correctly predicts the essentially com-
pact span of the breather. Beyond the breathers’ support the
discrete effects decay at a doubly exponential rate. Thus
the purely anharmonic interparticle interaction, in addition
to nonlinear force and nonlinear dispersion, creates a
genuine screening effect beyond which there is no measur-
able motion. In this sense the effects to be presented differ
in a fundamental way from classical solitons or breathers
and the like. See [1] for an overview of these issues.

Equations and scaling.—Consider the Hamiltonian
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describing a chain of 2N � 1 particles of equal massm and
equal spatial separation ‘, where P and � denote the
interaction and site potentials, respectively. Fixing the total
length L � 2N‘ and density 	 � m=‘ of the chain while
letting m # 0 and ‘ # 0, and hence N " 1 yields the contin-
uum limit
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Henceforth we consider the potentials
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y4 with a;b> 0: (3)

All four parameters 	, a, b, and c appearing in the
equation of motion derived from Hcont can be eliminated
up to the sign by rescaling t, x, and y, yielding an anhar-
monic Klein-Gordon equation (aKG)
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since 	, a, and b are positive on physical grounds. That
spatial gradients are nonlinear is a major change from the
conventional Klein–sine-Gordon case for now; as is typi-
cal for quasilinear wave equations in general, second de-
rivatives of solutions of the aKG may become infinite in a
finite time (the mollifying effect of dispersion due to the
site potential is in general ineffective in arresting the
gradient catastrophe). It is the dispersion due to the discrete
lattice which prevents this blowup, hence its singular effect
on the dynamics. In normalized units, which are used
throughout this Letter, the limiting period of small-
amplitude oscillations is 2� and, as is shown shortly, the
half length and the amplitude A of the stationary compac-
ton are
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Similarly rescaling the discrete equations of motion
arising from (1) yields the system
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where the nondimensional parameter h � ‘�jcj=a�1=4 mea-
sures the distance from the continuum limit. Unlike the
continuum model Eq. (4), small-amplitude solutions of (6)
exist indefinitely.

Small-amplitude scaling.—In the low-amplitude regime,
a scaling law relating time to amplitude emerges: writing
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FIG. 1. The persistence of breathers: Solutions beginning with
truncated cosine (left) and continuum breather (right) profiles of
normalized amplitude 0:01, with h � 0:0725 and zero initial
derivative. The lower curves shows the initial values, while the
upper curves show the solutions after 1000 periods of oscillation.
The truncated cosine solution differs from its initial profile by up
to 7:8% of its amplitude, but the continuum breather solution
differs by at most 0:15%.
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Eq. (4) in terms of w � eit�y� iyt� yields an equation in
standard averaging form [2], with the sum of squares of the
initial amplitude and velocity playing the role of the small
parameter. The averaged equation
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is invariant under w � �w, t � t=�2. Note that this scal-
ing law, which is consistent with the time scale of the
validity of the averaging approximation and applies in
the discrete case as well, concerns not the period of oscil-
lations of y, but rather the slower motions that take place
against that background. Unlike Eq. (4), Eq. (7) does not
allow shocks.

Breathers.—We begin with Eq. (4). Since the nonline-
arities there all involve the same power, separated solutions
y � ��t� �x� exist (cf., e.g., [3]), with

���� � ��3; (8)

�� 0�3�0 � sgn�c� 3 � � : (9)

Multiplying (9) by  0 and integrating yields

3� 0�4 � 2� 2 � �c� 4 � E � const: (10)

For compactly supported solutions E must equal zero
since  and  0 both vanish for large jxj. Such a  , not
vanishing identically, has a nonzero spatial extremum, at
which  0 � 0, so � and cmust have the same nonzero sign,
which must be positive for  to remain real for  near zero.
Hence a nontrivial compact solution can exist only when
c > 0. The separation constant � may then be normalized
to one by rescaling � and  while leaving their product y
unchanged, which reduces Eq. (10) to

3� 0�4 � 2 2 �  4 � 0: (11)

This shows that  has amplitude
���
2

p
as stated in Eq. (5),

while the normalized (8) shows that solutions y of smaller
amplitude oscillate periodically and those of larger ampli-
tude blow up. Solving (11) yields
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where the incomplete beta function B is defined by
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which imply that  vanishes at the value L0 given in (5).
Near x � L0,  � �x�L0�
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p , which makes Eq. (9) degenerate

there. This degeneracy allows us to continue the solution
by zero for jxj>L0, yielding a compact solution. Indeed,
substituting the expansion  � �x�L0�

2
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p H�x� L0� with

H�x� being the Heaviside function into (9), we find that
the most singular terms balance.
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The above considerations show that for compactification
to take place, not only a degeneracy of the spatial gradients
(or amplitudes) is necessary, but also that they be balanced
by the inertial force. A counterexample is afforded by the
periodic solution y � $�t� cos�%x� of (4) for c < 0, which
cannot be extended by zero outside the interval jxj � �

2% as
proposed in [4]: Using y��$�t��%x� �

2�H�%x� �
2� in

(4), the spatial-derivative term yields a Dirac delta function
not balanced by any other term, so the truncation is not a
solution.

The long-time persistence of such small-amplitude trun-
cated cosine profiles reported in [4] is not a special prop-
erty of that shape but rather a consequence of the time-
amplitude scaling law derived above: As shown in Figs. 1
and 2, the solution of Fig. 3(c) of Ref. [4], whose normal-
ized amplitude is 0:01, does change shape after a time
consistent with the time-amplitude scaling law, while the
continuum breather, which is an approximation of the true
discrete breather, still maintains its shape.

Almost-compact discrete breathers.—The separation an-
satz yn � ��t� n is equally applicable to the discrete
Eqs. (6) (cf., e.g., [5]), and leads to the normalization of
(8) for � plus
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Equation (14) implies that if  n equals zero but  n�1 does
not, then  n�1 must also be nonzero, which shows that
nonzero strictly compactly supported solutions cannot ex-
ist. In view of this impossibility, also noted in [5–7], the
compactons proposed in [7,8] are not exact solutions.

In [9] we prove that (14) has two solutions that are
perturbations of the continuum compacton. Although a
number of existence results for exact discrete breathers
have been obtained (see [10] for a review), they apply
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FIG. 3. Comparison of continuous (line) and sparse discrete
(dots) breather profiles for h � 0:4.

FIG. 2. The time-amplitude scaling: Log-log plots of ampli-
tude vs the time at which the effective width of the solution
increases by 0:3, for the truncated cosine profile (�,4) and the
continuum breather profile (�), with h � 0:0725 and zero initial
derivative. The least-squares fit line for the truncated cosine
profile, based only on �, has slope �1:97. The large triangle
represents Fig. 1, confirming that that case is well represented by
the time-amplitude scaling law. The anomalously large times
obtained for the small-amplitude continuum breather illustrate
the stability threshold discussed below.
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either to the ‘‘anticontinuum limit’’ in which h is large
[11], to special interaction potentials not applicable to
chains governed by Newton’s equations as considered
here [12], to equations without site potentials or including
linear interaction terms [13,14], or to solutions whose sign
changes from each site to the next [15] (dimers) and so
neither converge nor have finite energy in the continuum
limit. We calculate the discrete breather profiles numeri-
cally by a one-parameter shooting method, with the other
free parameter determined by the symmetry condition
 1 �  �1 or  1=2 �  �1=2.

Effects of discreteness.—While �n �  �nh� for nh <
L0, for nh > L0 the discrete profile does not vanish iden-
tically like the continuum profile, but obeys the double-
exponential decay law

lnj ln nj
n

! ln3: (15)

The same result was obtained in [16] for large-h
alternating-sign discrete breathers. Such faster-than-
exponential decay on the fast x=h spatial scale is the
defining property of almost-compact solutions.

Although the method of [17] could be used to develop a
well-posed equation with leading dispersive effects im-
bedded, the equation so obtained is valid only away from
the peak and the tails of the breather profile, because of the
limited smoothness of the continuum profile near its peak
and the decay on the fast x=h spatial scale of the discrete
profile in the tails.

The limited smoothness of the continuum profile at its
peak causes the discrete breather profile to differ not by the
order h2 expected for an even perturbation, but by O�h4=3�
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[9]. Still, for the moderately small value h � 0:0725 used
in the computations of Figs. 1 and 2, the maximum dis-
crepancy between the discrete and continuum profiles is
only 0:1% of the breathers’ amplitude, Even for h � 0:4,
the deviation between the discrete and continuum profiles
is only 2% of the amplitude; see Fig. 3. In particular, the
effective width of the discrete breather is essentially the
same as that of the continuum breather, independently of
the number of cells within that width.

Stability.—Although the discrete breather, being an ex-
act solution of Eq. (6), retains its shape indefinitely, its
actual importance depends on the degree of its stability.
Since Eq. (6) is a Hamiltonian, at best neutral stability
might hold. Calculations indicate the existence of a sharp
h-dependent amplitude threshold, below which the discrete
breather is indeed stable. This threshold can be seen clearly
in Fig. 2, where a 1% decrease in amplitude of the con-
tinuum breather caused a 70-fold increase in time needed
for the edge of the solution to move a fixed amount 0:3. A
more traditional measure of stability is the rate of increase
of the size of a small random perturbation, say, initially
restricted to the support of the continuum breather.
Calculations using the same value h � 0:0725 show that
for amplitude 0:1 the size of such perturbations of the
discrete breather increases 100-fold within 10 periods of
oscillation, but for amplitude 0:09 the same perturbations
merely fluctuate in size within a range from 0:7 to 1:5 times
their initial amplitude throughout more than 500
oscillations.

A related issue is that of perturbations due to mecha-
nisms not included in our model, with the harmonic force
being the uppermost example. In the case of a sparse lattice
wherein the system has an extended domain of stability, a
small harmonic part causes a minor amplitude change and
a very slow leakage of the breather’s support, which raises
the tails. The following numbers are typical: for a normal-
ized coefficient of the harmonic force � 10�4 which in
actual units is not too small, and h � 1=4, after 500
oscillations the breathers amplitude has changed by less
3-3



FIG. 4. The waiting-time phenomenon: Effective edge of sup-
port as a function of time for solutions beginning with truncated
cos (4), truncated cos4 (�), and continuum breather (�) pro-
files, all scaled to amplitude 0:2 and half length L0. The edge of
the linear-edged cos profile begins to move immediately, but the
edge of the superlinear profiles stays put for a while. The edge is
defined as the point where the root mean square of the solution
and its derivative first exceeds a tolerance equal to half the
smallest nonzero value of the initial data. Lowering this toler-
ance by a factor of 10�12 moves the edge by at most three grid
points for the linear-edged profile and at most two grid points for
the other cases.
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then 0:02, and four mass points (x� 4) beyond the exact
boundary ( � 2:92) the amplitude is now �10�4. Thus the
harmonic perturbation turns a permanent pattern into a
very long one.

The waiting-time effect.—The loss of localization, as
measured by the spreading of the support of the solution,
provides a physically meaningful measure of the change of
shape of a solution. Although discrete solutions do not
have strictly compact support, when their initial data
have compact support then their tails decay exceedingly
rapidly, in a similar fashion to the discrete breather profile.
This makes the effective support fairly insensitive to ex-
actly how it is defined, as described in Fig. 4. That figure
also illustrates the fact that the permanent localization of
the exact breather is but the extreme case of the waiting-
time phenomenon before spreading begins. This occurs
when the initial profile is superlinear at its edge, since
the vanishing of yx there makes the wave speeds C� yx
of the continuum equation become degenerate. In a linear
problem where C�x� is predetermined, that would mean a
permanent trap; in our case there is a finite-time wait
during which the solution reshapes at the edge. This
‘‘opens the gate,’’ and the wave spreads out of its initial
support. In the frame of the PDE equation, the spreading of
the support requires the formation of energy-dissipating
shocks, while the original ordinary differential equation
chain preserves energy for all time. The dense chain used
in the computation of Fig. 4 is close to the continuum; as h
increases two effects occur concurrently: notably, the wait-
ing time increases, and simultaneously its sensitivity on the
04550
choice of initial pulse decreases, since there are fewer cells
to distinguish between different shapes.

A planar compact breather.—Rectangular planar anhar-
monic lattices lead to anisotropic continuum models [17].
To ensure that nearest-neighbor interactions with quartic
potentials like (3) yield an isotropic continuum, we use a
hexagonal lattice to obtain

Ztt � Z � r � �jrZj2rZ� � Z3; (16)

where the equation has been normalized as above [17].
Averaging out the quick oscillations, as in 1D, we derive a
2D variant of Eq. (7) and similar conclusions regarding the
scaling of the amplitude with time. Equation (16) admits
separated radial solutions Z � ��t� �jxj�. Although the
nonlinear equation determining the shape of  can no
longer be integrated explicitly, a compact solution having
a similar shape to its 1D cousin exists [9]. Since compact-
ness is caused by the degeneracy of the highest-order
operator, which is independent of dimension, compactness
persists in all dimensions and, indeed, occurs in a variety of
different processes like thermal waves in plasma. As� still
satisfies (8), breathers are once again obtained for ampli-
tudes below that of the stationary compacton.

In summary, we have unfolded an almost-compact, ro-
bust, macroscopic discrete breather which remains intact in
the continuum limit in one and two dimensions, where it
becomes exactly compact.
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