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Creep Ruptures in Heterogeneous Materials
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We present creep experiments on fiber composite materials with different controlled heterogeneity. All
samples exhibit a power-law relaxation of the strain rate in the primary creep regime (Andrade’s law)
followed by a power-law acceleration up to rupture. We discover that the rupture time is proportional to
the duration of the primary creep regime, showing the interplay between the two regimes and offering a
method of rupture prediction. These experimental results are rationalized by a mean-field model of
representative elements with nonlinear viscoelastic rheology and with a large heterogeneity of strengths.
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The damage and fracture of materials, particularly com-
posite materials used in naval, aeronautics, and space in-
dustry, are of enormous interest due to their economic and
human cost. Despite considerable experimental [1–3] and
theoretical work [4–6] on fracture, many questions have
not been answered yet. Recently, statistical physicists have
shown the existence of a power-law acceleration of acous-
tic emissions announcing the global rupture of heteroge-
neous materials [2,3], similar to the critical behavior of the
out-of-equilibrium phase transition [6], offering a way to
predict material rupture [2].

This Letter presents creep experiments on composite
materials with controlled heterogeneity conducted up to
rupture, which we explain using a simple model of repre-
sentative elements, in the framework of fiber bundles mod-
els. Creep, also known as ‘‘static fatigue,’’ is the progres-
sive deformation of a material under constant load. Three
creep regimes are usually observed. During the primary
regime, the strain rate decays as a power law with time
following the application of the stress (Andrade’s law) [7].
The secondary regime describes a quasiconstant deforma-
tion rate, which evolves towards the tertiary creep regime,
if the stress and the temperature are high enough, during
which the strain rate accelerates up to rupture.

The experiments are carried out on cross ply glass/
polyester composite materials and on sheet molding com-
pound (SMC) composites. Two types of cross angle ply
laminates are fabricated, denoted ��62�� and �90�=35��,
where the angles measure the directions of the glass fibers
with respect to the loading direction, with a fiber volume
fraction of 75%. The SMC composites consist of a combi-
nation of polyester resin, calcium carbonate filler, thermo-
plastic additive, and random oriented short glass fibers, in
the form of a sheet. The relatively low fiber volume frac-
tion, about 30%, and the random filler and reinforcement
distribution during processing lead to a more heteroge-
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neous structure for the SMC compared to the cross ply
composites. The ��62�� and �90�=35�� specimens have
dimensions 14� 100� 2 mm3. The SMC samples are in
the form of a 120 mm barbell with 3 mm thickness. All
specimens are subjected to a constant stress � and tem-
perature T (below the glass transition of the matrix), which
were fixed to � � 15 MPa and T � 60 �C for the ��62��
specimens, � � 22 MPa and T � 60 �C for the �90�=35��
specimens, and � � 48 MPa and T � 100 �C for the
SMC. The creep tensile tests were performed using a
servohydraulic mechanical testing system. Constant tensile
load was applied after a transient progressive loading, and
the resulting strain and acoustic emissions were recorded
until rupture. Acoustic emission (AE) is a standard tech-
nique to monitor the evolution of damage in composites,
due to matrix cracks, fiber matrix debounding, fiber breaks,
and delaminations [8].

All 15 samples show a transient decrease of the strain
rate following the application of the stress (primary creep),
followed by a quasistationary regime (secondary creep),
ending with an acceleration of the strain rate up to rupture
(tertiary creep) (Fig. 1). The decrease of the deformation
rate d�=dt in the primary creep regime can be described by
Andrade’s law [7] d�=dt� t�p, with an exponent p 	 1
for all samples compatible with a universal 1=t decay as
shown in Fig. 1(b). The deviation from Andrade’s law for
small time results from the transient of the first 10 sec
during which the stress progressively increases up to its
final and constant value.

The acceleration of the strain rate before rupture can be
described by a power-law singularity d�=dt� 
tc � t��p0

,
with an exponent p0 	 1 for all 15 samples, compatible
with a universal 1=
tc � t� acceleration as shown in
Fig. 1(c). In Ref. [9], we also fit the strain rate and AE
rate of each sample by Andrade’s law in the primary
regime, and by a power-law acceleration before rupture,
1-1  2005 The American Physical Society
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FIG. 2 (color online). Relation between the time tm of the
minima of the strain rate and the rupture time tr, for all samples.
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FIG. 1 (color online). Creep strain rate for all 15 samples: (a) linear time scale, with times renormalized by the rupture time tr;
(b) logarithmic time scale to test for the existence of Andrade’s law in the primary creep; (c) logarithmic time scale in tc � t to test the
time-to-failure power-law in the tertiary creep. The thick straight line in (b) [respectively, (c)] corresponds to the law 1=t [respectively,
1=
tc � t�].
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letting p and p0 free to adjust. We find that p fluctuates in
the range 0.3–1.3 and p0 varies between 0.5 and 1.1 for the
15 samples tested, with most values of p and p0 close to 1.
The critical times tc determined from the fits of the data are
close to the observed rupture times for each sample. The
values of p and p0 are on average slightly larger for the
SMC than for the cross ply composites, possibly due to the
larger heterogeneity of the SMC or to the different values
of the applied stress. However, because of the limited
scaling regime used in the fits, it is difficult to decide
whether this dispersion of p and p0 results from genuine
sample-to-sample fluctuations or from statistical noises
and finite-size effects.

The rate of AE events, and the rate of AE energy release,
exhibits a behavior similar to the strain rate (Andrade’s law
and power-law acceleration before rupture), with larger
fluctuations and slightly different exponents, and with a
few exceptions: the �90�=35�� samples did not show a
relaxation of AE activity during primary creep, and one
��62�� sample did not show any acceleration before rup-
ture (see [9] for more details on the AE data). The differ-
ence between strain rate and AE data is not surprising as
AE and strain do not reveal the same physical processes.
AE measures the different types of damage developing and
cascading within the sample, while strain is an integrated
measure of both damage and stress redistribution within
the sample. AE is more sensitive to the highest moments of
the stress distribution while strain is related to the low
order moments of stress. The better time resolution of the
AE data compared with the strain data allowed us to
observe the critical power-law acceleration of damage
over a longer time range, up to 4 orders of magnitude in
time [9], thus confirming the previous announcement of
power laws in the tertiary creep regime which were estab-
lished over more limited time scales [2,3].
04550
There is a huge variability of the rupture time from one
sample to another one, for the same applied stress, as
shown in Figs. 1 and 2. These fluctuations of rupture
time are expected for quenched random systems with
strongly nonlinear dynamics, which are very sensitive to
the heterogeneity distribution and to small variations of the
applied stress. Figure 2 shows that the transition time tm
between the primary creep regime and the tertiary regime,
defined as the minimum of the strain rate, is proportional to
the rupture time: tm 	 2=3tr. We also found a negative
correlation between the (fitted) Andrade exponent p and
1-2
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the rupture time tr [9]. These observations show that
damage in the primary and secondary creep regimes im-
pacts its subsequent evolution. This suggests a way to
predict the rupture time from the observation of the strain
rate during the primary and secondary creep regimes,
before the acceleration of the damage leading to rupture.

Creep observations have been modeled in terms of vis-
coelastic fibers, with deterministic dynamics and quenched
disorder [10]. This model reproduces a power-law singu-
larity of the strain rate before rupture with p0 � 1=2 in the
case of a uniform distribution of strengths [10] but does not
explain Andrade’s law for the primary creep. Here, we start
from the model of [10] and enrich it with a more realistic
rheology and heterogeneity, in order to account simulta-
neously for Andrade’s law in the primary creep and for the
power-law singularity of the strain rate before rupture. We
view a composite system as made of a large set of repre-
sentative elements (RE), each element comprising many
fibers with their interstitial matrix. The applied load is
shared democratically between all RE. This assumption
has been shown to be a good approximation of the elastic
load sharing for sufficiently heterogeneous materials [11].
Each RE is modeled as a nonlinear Eyring dashpot [12] in
parallel with a linear spring of stiffness E. The Eyring
rheology, which is the standard for fiber composites, con-
sists at the microscopic level in adapting to the matrix
rheology the theory of reaction rates describing processes
activated by crossing potential barriers. A given RE fails
when its elongation/deformation � reaches a threshold. The
rupture thresholds are distributed according to the cumu-
lative distribution P
�� given by P
�� � 1� ��01=
�
�02��

, where �01 and �02 are two constants with �01 �
�02. That P
� ! 0� is nonzero reflects the fact that a
fraction 1� 
�01=�02�

 breaks as soon as the stress is
applied, thus modeling a finite fraction of weak elements.
The power-law distribution P
�� for large � is motivated by
the large distribution of rupture times for the same applied
stress (Fig. 2). The exponent > 1 controls the amplitude
of the frozen heterogeneity of the RE strengths.

The equation controlling the deformation �
t� of each
surviving RE according to the Eyring rheology is

d�
dt

� K sinh
�

��
1� P
��

� �E�
�

(1)

with the initial condition �
t � 0� � 0. The fraction of
unbroken RE is 1� P
�� and �=�1� P
��� is the stress
applied on each unbroken RE. � is proportional to the
inverse temperature, E is the Young elastic modulus of
the RE, and K is a rate coefficient.

The system defined by (1) is stable (no global rupture)
if the differential equation (1) has a stationary solution
d�=dt � 0 with � > 0, i.e., if the equation �
� �02�=
�01� � 
E=��� has a nontrivial solution. This defines a
threshold �� below which the strain converges asymptoti-
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cally to a constant and above which d�=dt grows up to
rupture.

In the primary regime � � �02; thus 
� �02� 	
�02


1�=�02�. If the stress on the dashpot is small,
we can replace sinh by exp=2. With these approximations,
the differential equation (1) has the solution

d�
dt

�
K

2e���
�02=�01�  tK��E� �
�02


�02�01
��

: (2)

Expression (2) predicts that, if the stress is not too large,
d�=dt is of Andrade’s form �t�p, with an exponent p � 1
at early times, in good agreement with the average decay
law shown in Fig. 1(b). For larger �, the strain rate starts to
accelerate as soon as the load is applied. Note that the
observation of Andrade’s power-law creep in this model
does not involve any rupture of RE and is thus independent
of the choice of the distribution of rupture thresholds P
��.

In the tertiary creep regime, we can neglect �02 com-
pared with �. Close to rupture, for large �, the linear term
E� is small compared with �=�1�P
���� �

�01
 
��02�



if > 1. This leads to the equation

d�
dt

	
K
2
exp

�
���

�01


�
: (3)

Its solution is, to leading logarithmic order,

d�
dt

�
A

�� ln
tc � t��
1=��1 1

tc � t
; (4)

where A � �01
����1=. Contrary to the primary regime,
the heterogeneity of the rupture threshold is an essential
ingredient for the power-law singularity before rupture, but
the leading power-law term with p0 � 1 in (4) does not
depend on the exponent  characterizing heterogeneity, in
good agreement with the average acceleration law shown
in Fig. 1(c). The acceleration toward rupture is due to the
positive feedback of broken RE, which increases the stress
and strain on the unbroken RE leading to the global rupture
of the system.

Figure 3 shows the numerical solution of Eq. (1) to-
gether with the approximate analytical solutions (2) in the
primary creep and (4) close to rupture, for different values
of the applied stress �. In the primary creep regime close to
the rupture threshold � 	 ��, we observe numerically an
apparent exponent p < 1, smaller than predicted by (2),
which can explain the values of p fitted to the experimental
data [9]. For a stress � � ��, the strain rate accelerates
immediately when the load is applied. For �> ��, the
apparent p value decreases in the model between 1 and 0 as
the applied stress increases. The duration of the primary
creep also decreases with �. The model thus explains the
correlation found experimentally between the p value and
the rupture time [9].

In the tertiary regime, for � � ��, we find numerically
that expression (3) is a good approximation very close to
1-3
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FIG. 3 (color online). Strain rate d�=dt given by (1) for different values of the stress � (in MPa), and with parameters E � 20 GPa,
 � 1:2, �01 � 0:003, �02 � 0:015, � � 50 GPa�1, and K � 10�5 sec�1. (b) illustrates Andrade’s law in the primary regime, with
exponent p 	 1 for � � 22 MPa and p 	 0:8 for � � 25 MPa. The dashed line is the approximate solution (2) of (1) with � �
22 MPa. (c) shows the power-law acceleration of d�=dt before failure for � � 25 MPa, with p0 	 1 asymptotically. In (a) and (c) the
time is normalized by the rupture time for � � 25 MPa, and by the time when d�=dt decreases below 10�14 for � � 22 MPa.
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rupture t 	 tc. But for � 	 ��, there is a crossover further
from rupture with an apparent exponent p0 � 0:9. This
simple model thus reproduces both power laws in the
primary and tertiary creep regimes, with an apparent ex-
ponent p � 1 for the primary creep, and with p0 � 1 for
the tertiary regime, except for a crossover with an apparent
exponent p0 slightly smaller than 1.

The rupture time has a power-law singularity �
��

����1=2 for � 	 ��, as found previously [10] for the
model with a linear dashpot, and decays exponentially
for � � �� [9]. The transition time tm (minima of the
strain rate) is equal to tc=2. This result recovers the pro-
portionality of tm and tc found experimentally but pre-
dicts a duration for the primary creep shorter than the
observations tm 	 2tc=3 (Fig. 2).

In conclusion, we have shown that the interactions be-
tween the RE elements together with a large heteroge-
neity and a simple nonlinear rheology are sufficient to
explain our experiments, which exhibit Andrade’s law in
the primary creep regime and a finite-time singular power-
law acceleration before rupture. This model replaces the
need for complex memory effects (such as the integrodif-
ferential Schapery long-memory formalism [13]) often
invoked in the composite literature. A natural improve-
ment of the model would be to relax the democratic load
sharing rule as in [10] in order to introduce realistic elastic
interactions. This improvement may provide a more real-
istic value of the constant of proportionality between tm
and tc (Fig. 2).
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