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Quantum Freeze of Fidelity Decay for Chaotic Dynamics
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We show that the mechanism of quantum freeze of fidelity decay for perturbations with a zero time
average, recently discovered for a specific case of integrable dynamics [New J. Phys. 5, 109 (2003)], can
be generalized to arbitrary quantum dynamics. We work out explicitly the case of a chaotic classical
counterpart, for which we find semiclassical expressions for the value and the range of the plateau of
fidelity. After the plateau ends, we find explicit expressions for the asymptotic decay, which can be
exponential or Gaussian depending on the ratio of the Heisenberg time to the decay time. Arbitrary initial
states can be considered; e.g., we discuss coherent states and random states.
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The question of the stability of quantum time evolution
with respect to small changes in the Hamiltonian has
recently attracted a lot of attention [1,2]. This question is
particularly important in the context of quantum informa-
tion [3]. The central quantity for describing quantum
stability is the fidelity F�t� � jh �t�j ��t�ij2 where
j �t�i � U0�t�j i and j ��t�i � U��t�j i are unperturbed
and perturbed time evolutions, of perturbation strength �,
respectively, starting from the same initial state j i. Let the
evolution operator be written as a time-ordered product

U��t� � T̂ exp�� i
R
t
0 dt

0H��t0�= �h� in terms of generally
time-dependent Hamiltonian H��t� � H0�t� 	 �H0�t�. We
assume that either H��t� is time independent or, more
generally, periodically forced with period �, H��t	 �� �
H��t�. Then the time is measured in discrete units of �,
namely t � n�, and the former (autonomous) case is sim-
ply obtained as the limit �! 0. The perturbed propagator
for one time step can be written as U���� � U0����
exp��iV��= �h� in terms of a Hermitian perturbation V
which in the leading order perturbs the Hamiltonian, V �
H0 	O����. It has been shown [2] that for classically
chaotic systems and for sufficiently strong perturbation
and coherent initial state j i the fidelity decay is given
by classical Lyapunov exponents, and this phenomenon
has been recently explained solely on the basis of classical
dynamics [4]. On the other hand, for sufficiently small �,
one can express fidelity decay in terms of a power series in
� where coefficients are given as a time-correlation func-
tion of the perturbation [5,6]. The rule of thumb says that a
slower decay of correlations implies a faster decay of
fidelity, and vice versa. Using this approach, one can derive
universal forms of fidelity decay in both cases of classi-
cally regular and chaotic dynamics and express all time
scales solely in terms of classical quantities and �h.

The starting point of our analysis is the representation of
fidelity F�n� � F�n�� in terms of the expectation value [5]

F�n� � jf�n�j2; f�n� � h jM�n�
� j i (1)

of the echo operatorM�n�
�
:� U0��n��U��n�� which is the
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propagator in the interaction picture. Namely,

M�n�
� � T̂ exp�� i	n�V��= �h�; (2)

where, for any operator A, 	n�A� :� �
Pn�1
n0�0 An0 and

An :� U0��n��AU0�n��. In case of continuous time,

M��t� � T̂ exp�� i ��h	�V; t��, with 	�A; t� :�
R
t
0 dt

0A�t0�,
A�t� :� U0��t�AU0�t�. The approach [5,6] using the
power law expansion of (2) in � gives to the second order

F�n� � 1�
�2

�h2
fh	2n�V�i � h	n�V�i2g 	O��4�; (3)

where h�i :� h j � j i.
A particularly interesting special situation arises when a

time averaged perturbation �V :� limn!1�n���1	n�V�
equals zero. In general, the perturbation can be decom-
posed into �V and the residual part V � �V 	 Vres. The part
�V that commutes with the unperturbed evolution U0, and is

thus diagonal in its eigenbasis provided its spectrum is
nondegenerate, can sometimes be put together with the
unperturbed Hamiltonian H0. This is customary in various
quantum mean field approaches. Another situation of more
practical relevance emerges when H0 has an antiunitary
symmetry T, TyH0T � H0, changing sign of the perturba-
tion V, TyVT � �V. Then the matrix of V is imaginary
antisymmetric; hence, �V � 0. It is thus interesting to study
the stability of quantum dynamics with respect to residual
perturbation only (i.e., when its diagonal part exactly
vanishes �V � 0). This problem has been addressed for
the particular case of perturbed integrable dynamics , and
very interesting results on extreme stability of quantum
dynamics have been found.

In this Letter we show that this phenomenon of quantum
freeze, namely, the saturation of fidelity to a plateau of high
value, is much more general and robust as it appears in
Ref. [7], and applies to arbitrary quantum evolution pro-
vided only that �V � 0. In particular, we work out in detail
the important case of dynamics with a fully chaotic clas-
sical counterpart. We compute the plateau value (scaling as
1� const� �2 within the second order), its range scaling
1-1  2005 The American Physical Society
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as 1=�, and the rate of the asymptotic decay after the
plateau ends (which is either Gaussian or exponential),
quantitatively in the leading order in �h in terms of the
underlying classical dynamics. The phenomenon may
find a useful application in quantum computation where
the fidelity error is predicted to be small and frozen in time
provided only that the diagonal part of the error in each
gate can be cured by some other means.

In the autonomous case (�! 0), provided that the spec-
trum of H0 is nondegenerate (which is true for a generic
nonintegrable system), the perturbation is residual iff it can
be written as a time derivative of some observableW, i.e., a
commutator with H0, V � i

�h �H0; W� � �d=dt�W.
Generalizing to the discrete, time-periodic case, we assume
that the perturbation is of the form

V �
1

�
�W1 �W0� �

1

�
�U0����WU0��� �W�: (4)

We now apply the Baker-Campbell-Hausdorff (BCH) ex-
pansion eAeB � exp�A	 B	 �1=2��A;B� 	 . . .� to the
time-ordered product (2) and rewrite the echo operator

M�n�
� � exp

�
�
i
�h

�
	n�V��	

1

2
�n�

2 	 . . .
��
; (5)

where �n :�
i�2
�h

Pn�1
n0�0

Pn�1
n00�n0 �Vn0 ; Vn00 �. It is interesting to

note that all matrix elements of �n grow with n not faster
than / n (Sect. 2 of Ref. [7]). This becomes obvious for the
special form of perturbation (4) for which it follows

	n�V� � Wn �W0; (6)

�n �	n�R��
i
�h
�W0;Wn�; R :�

i
��h

�W0;W1�; (7)

so the operator �n is also a time sum or integral of a time-
dependent operator R, minus a sort of time-correlation
function which shall be neglected for systems with a strong
decay of correlations studied below. In the continuous time
case, R � i

�h �W; �d=dt�W� � �h�2�W; �W;H0�� and ��t� �R
t
0 dt

0R�t0� � i
�h �W�0�; W�t��. We note that, provided W has

a well defined classical limit, �h! 0, then also V, R, and �n
have well defined limits since i

�h ��;�� can be replaced by
Poisson brackets. This is what we assume below, as well as
that the limiting classical dynamics of U0 is fully chaotic.

Comparing the two terms in the BCH exponential (5),
we note that there should exist a time scale t2 � ��1, such
that if n� < t2 then the first term	n� dominates the second
one 12 �n�

2 (and higher [7]). So, let us first consider the case
n� < t2. Then we can neglect the second term and write the
fidelity amplitude

f�n� � hexp�� i�Wn �W0��= �h�i: (8)

Expanding f�n� to the second order in �, we find F�n� �

1� �2

�h2 ��
2
0 	 �2n � Cn � C�

n� where �2k :� hW2
k i � hWki

2,
Cn :� hWnW0i � hWnihW0i. Using Cauchy-Schwartz in-
equality jCnj � �0�n and the fact that for a bounded
04410
operator W the sequence �n is bounded, say, by r, we
find a freeze of fidelity 1� F�n� � 4 �

2

�h2
r2, n� < t2 / ��1,

for arbitrary quantum dynamics, irrespective of the exis-
tence and the nature of the classical limit.

Let us further assume that, due to the mixing property of
classically chaotic dynamics, time correlations vanish
semiclassically beyond some mixing time scale t1, Cn !
O� �h� for n� > t1, and quantum expectation values become
time independent and equal, in the leading order in �h, to the
classical averages over an appropriate invariant set hAicl :�R
d�Acl. Hence, between t1 and t2, the fidelity freezes to a

constant value [8]

Fplat � 1�
�2

�h2
��20	�2cl�; �2cl :� hW2icl�hWi2cl: (9)

Considering two interesting extreme examples of initial
states, namely, coherent initial states (CIS) and random
initial states (RIS), we find the following: For CIS �20 / �h
can be neglected with respect to �2cl, whereas for RIS �2n
does not depend on time; hence, �20 � �2cl. So within the
linear-response approximation 1� Fplat is universally
twice as large for RIS than for CIS. It is also worth
stressing that the quantum relaxation time for CIS is t1 �
tE, where tE � � log �h=� is the Ehrenfest time for a chaotic
classical dynamics with a Lyapunov exponent �, while for
RIS t1 / �h0 is simply the classical mixing time.

One can go beyond the linear response in approxi-
mating (8) using the simple fact that in the leading order
in �h quantum observables commute and, as before, that for
n� > t1 the time correlations vanish, namely,
hexp�� i ��h �Wn �W0��i � hexp��i ��hWn�ihexp�i

�
�hW0�i:

Fplat � jhexp��iW�= �h�iclhexp�iW0�= �h�ij2: (10)

Defining a generating function in terms of the classical
observable Wcl, G�z� :� hexp��izW�icl, one can com-
pactly write FCISplat � jG��= �h�j2 for CIS (neglecting the
localized initial state average with W0) and FRISplat �
jG��= �h�j4 for RIS, satisfying the universal relation FRISplat �
�FCISplat �

2. Curiously, the same relation is satisfied for the
case of regular dynamics [7]. If the argument z � �= �h is
large, the analytic function G�z� can be calculated gener-
ally by the method of stationary phase. In the simplest case
of a single isolated stationary point ~x� in N dimensions,

jG�z�j �
��������
%
2z

��������
N=2

jdet@xj@xkW� ~x��j�1=2: (11)

This expression gives an asymptotic power law decay of
the plateau height independent of the perturbation details.
Note that for a finite phase space we have oscillatory
diffraction corrections to Eq. (11) due to a finite range of
integration

R
d� which in turn causes an interesting situ-

ation for specific values of z, namely, that by increasing the
perturbation strength � we can actually increase the value
of the plateau.
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FIG. 1. F�t� for the kicked top, with (a) � � 10�3 and
(b) � � 10�2, the upper curves (dashed lines) for CIS and the
lower curves (full lines) for RIS. Horizontal lines are theoretical
plateau values (10), and vertical lines are theoretical values of t2
(15). Points represent calculations of the corresponding classical
fidelity for CIS which follows quantum fidelity up to the
Ehrenfest barrier tE / log �h (see Sect. 4 of Ref. [5]) and exhibits
no freezing.
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Next we shall consider the regime of long times n� > t2.
Then the second term in the exponential of (5) dominates
the first one; however, even the first term may not be
negligible. Up to terms of order O�n�3� we can factorize
Eq. (5) as M�n�

� � exp�� i ��h �Wn �W0�� exp��i
�2
2 �h�n�.

When computing the expectation value f�n� � hM�n�
� i we

again use the fact that in the leading semiclassical order the
operator ordering is irrelevant and that, since n�� t1, any
time-correlation can be factorized, so also the second term
of �n (7) vanishes. Thus we have

F�n� � Fplat

��������
�
exp

�
�i
�2

2�h
	n�R�

�	��������
2
; n�> t2: (12)

This result is quite intriguing. It tells us that apart from a
prefactor Fplat, the decay of fidelity with residual perturba-
tion is formally the same as the fidelity decay with a
generic nonresidual perturbation, Eqs. (1) and (2), when
one substitutes the operator V with R and the perturbation
strength � with �R � �2=2. The fact that time ordering is
absent in Eq. (12) as compared with (2) is semiclassically
irrelevant. Thus we can directly apply the general semi-
classical theory of fidelity decay [5], using a renormalized
perturbation R of renormalized strength �R. Here we sim-
ply rewrite the key results in the ‘‘non-Lyapunov’’
perturbation-dependent regime, �R� < �h. Using a classical
transport rate ( :� limn!1

1
2n� �h	

2
n�R�icl � h	n�R�i2cl�, we

have either an exponential decay

F�n� � Fplat exp


�
�4

2 �h2
(n�

�
; n� < tH; (13)

or a (perturbative) Gaussian decay

F�n� � Fplat exp


�
�4

2 �h2
(
�n��2

tH

�
; n� > tH: (14)

tH � �N =�2s� is the Heisenberg time, where N � �h�d

(in d degrees of freedom) is the total dimension of the
Hilbert space supporting the time evolution and s is the
number of different symmetry classes (of possible discrete
symmetries ofH0) carrying the initial state j i. This is just
the time when the integrated correlation function of Rn
becomes dominated by quantum fluctuations. Comparing
the linear-response expression for Fplat (9) with the expo-
nential factor of Eq. (13), and similarly for Eq. (14), we
obtain a semiclassical estimate of t2:

t2 � minf�tH=(�
1=2�cl�

�1; �2cl(
�1��2g: (15)

Interestingly, the exponential regime (13) can take place
only if t2 < tH. If one wants to keep Fplat � 1 or have
exponential decay in the full range until F� 1=N , this
implies a condition on dimensionality: d � 2. The quan-
tum fidelity and its plateau values have been expressed (in
the leading order in �h) in terms of classical quantities only.
While the prefactor Fplat depends on the details of initial
state, the exp factors of (13) and (14) do not. Yet, the
freezing of fidelity is a purely quantum phenomenon.
04410
The corresponding classical fidelity (defined in [5]) does
not exhibit freezing (see Fig. 1). Let us now demonstrate
our theory by numerical examples.

First, we consider a quantized kicked top as an example
of a one-dimensional system (d � 1). The system is de-
scribed by quantum angular momentum Jx;y;z with
(half-)integer modulus J and the one-step propagator U �

exp��i,J2z=2J� exp��i%Jy=2�. We have chosen , � 30
ensuring fully chaotic corresponding classical dynamics
and J � 1000 determining the effective Planck constant
�h � 1=J � 10�3. The perturbation is chosen as V � �J2x �
J2z �=2J2 associated with W � J2z=2J2. The initial state is
either RIS (with Gaussian random expansion coefficients)
or SU(2) CIS centered at �’; .� � �1; 1�. In both cases the
initial state is projected on an invariant subspace of dimen-
sion N � J spanned by H OE � fj2mi � j � 2mi; j2m�
1i 	 j � �2m� 1�i;m � 1; . . . ; J=2g where jmi is an ei-
genstate of Jz. We first checked the plateau. Within the
linear response (9) we have to evaluate only �2cl � 1=45 for
the corresponding classical observable Wcl � z2=2, giving
FCISplat � 1� ��J�2�2cl, F

RIS
plat � 1� ��J�22�2cl. These values

give good agreement with the fidelity for weak perturba-
tion � � 10�3 shown in Fig. 1(a), whereas for strong
perturbation � � 10�2 shown in Fig. 1(b) the theoretical
values (10) of Fplat, expressed in terms of the generating
function G�z� for CIS/RIS, have to be calculated exactly,
and, indeed, the agreement is excellent. Integration over
the sphere yields G��J� �

������%
2�J

p
erfi�ei%=4

�����������
�J=2

p
�.

Comparing with the asymptotic general formula for G�z�
(11), we now also find a diffractive contribution due to the
1-3
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FIG. 2. Long-time Gaussian decay for CIS of a single kicked
top for the same parameters as in Fig. 1(a). Full curve is a direct
numerical evaluation, empty circles are numerical calculations
using the renormalized strength �R and operator R, while the
chain curve gives the theoretical decay (14).
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FIG. 3. Long-time fidelity decay in two coupled kicked tops.
(a) For strong perturbation � � 7:5� 10�2 we obtain an ex-
ponential decay, and (b) for smaller � � 2� 10�2 we have a
Gaussian decay. Meaning of the curves is the same as in Fig. 2.
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oscillatory behavior of the complex erf function. Small
(quantum) fluctuations around the theoretical plateau val-
ues in Fig. 1 lie beyond the leading order semiclassical
description. In Fig. 1 we also demonstrate that the semi-
classical formula (15) for t2 works very well. The long-
time Gaussian decay for the parameters of Fig. 1(a) is
shown in Fig. 2. Here we compare a direct numerical
calculation with the numerical calculation using a renor-
malized perturbation operator (7) �RR � ��2

4J3 �

�JxJyJz 	 JzJyJx�, and with the theoretical prediction
(14) where the classical dynamics of Rcl � �xyz gives
( � 5:1� 10�3.

To demonstrate the possibility of clean exponential
long-time decay of fidelity (13) we look at a system of
two (d � 2) coupled tops ~J1 and ~J2 given by a propagator
U � exp��i"Jz1Jz2� exp��i%Jy1=2� exp��i%Jy2=2�, with
the perturbation generated by W � A1 � 1 	 1 � A2,
where A � J2z=2J2 for each top. We set J � 1= �h � 100
and " � 20 in order to be in a fully chaotic regime. The
initial state is always a direct product of SU(2) coherent
states centered at �’; .� � �1; 1� which is subsequently
projected on an invariant subspace of dimension N �
J�J	 1� spanned by a subspace fH OE �H nH OEgsym
symmetrized with respect to the exchange of the two tops.
Numerical results are shown in Fig. 3. Here we show only a
long-time decay, as the situation in the plateau is qualita-
tively the same as for d � 1. For large enough perturbation
one obtains an exponential decay shown in Fig. 3(a), while
for smaller perturbation we have a Gaussian decay shown
in Fig. 3(b). Numerical data have been successfully com-
pared with the theory (13) and (14) using classically calcu-
lated ( � 9:2� 10�3, and with the ‘‘renormalized’’
numerics using the operator R (7).

In this Letter we discussed a freeze of fidelity for arbi-
trary quantum evolution provided only that the diagonal
part of the perturbation in the basis of the unperturbed
evolution exactly vanishes. The value of the plateau can
be arbitrarily close to 1 and can span over arbitrary long-
04410
time ranges for a sufficiently small strength of perturba-
tion. We worked out in detail the case of systems with a
fully chaotic classical limit. Our result is predicted to have
an immediate application to quantum information process-
ing. If combined with the inequality between the purity I�t�
of a reduced density matrix of a bipartite quantum system
and the fidelity, namely I�t�> jF�t�j2 [9], we predict that
decoherence as characterized by I�t� should also exhibit a
freeze for the particular class of perturbations.
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Slovenia, and No. DAAD19-02-1-0086, ARO United
States.
1-4
[1] A. Peres, Phys. Rev. A 30, 1610 (1984); Ph. Jacquod et al.,
Phys. Rev. E 64, 055203 (2001); N. R. Cerruti and S.
Tomsovic, Phys. Rev. Lett. 88, 054103 (2002); F. M.
Cucchietti et al., Phys. Rev. E 65, 046209 (2002); G.
Benenti and G. Casati, Phys. Rev. E 65, 066205 (2002).

[2] R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86,
2490 (2001).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[4] G. Veble and T. Prosen, Phys. Rev. Lett. 92, 034101
(2004).
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