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Stable Ring-Profile Vortex Solitons in Bessel Optical Lattices
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Stable ring-profile vortex solitons, featuring a bright shape, appear to be very rare in nature. However,
here we show that they exist and can be made dynamically stable in defocusing cubic nonlinear media
with an imprinted Bessel optical lattice. We find the families of vortex solitons and reveal their salient
properties, including the conditions required for their stability. We show that the higher the soliton
topological charge, the deeper the lattice modulation necessary for stabilization.
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FIG. 1. (a) First-order Bessel lattice. Regions with higher
refractive index are shown with white color; regions with lower
refractive index are shown with black color. (b) Power of
ground-state soliton versus the propagation constant.
(c) Amplitude profiles of solitons corresponding to points
marked by circles in (b) at p � 15. Inset in (c) shows upper
cutoff versus lattice depth. (d) Stable propagation of the ground-
state soliton with b � 0:8 at p � 15 in the presence of white
noise with variance �2

noise � 0:01. Cut of intensity distribution at
� � 0 is shown.
Vortex solitons with a bright shape, i.e., screw topologi-
cal phase dislocations embedded in a localized ring-shaped
beam, might exist in different systems with focusing non-
linearities [1]. However, such solitons realize higher-order,
excited states of the corresponding nonlinear systems;
therefore, they tend to be highly prone to azimuthal mod-
ulational instabilities that lead to their spontaneous self-
destruction into ground-state solitons [2]. This process has
been observed experimentally in different settings [3].
Homogeneous defocusing nonlinear media can support
stable vortex solitons, but those have the form of dark-
shaped beams [4]. Localized, stable ring-vortex solitons in
homogeneous media are known to exist in models with
competing cubic-quintic or quadratic-cubic nonlinearities
[5,6]. Nevertheless, such models are very challenging to
implement in practice, as they require very large light
intensities where the higher-order nonlinearities are typi-
cally accompanied by additional dominant processes, like
multiphoton absorption [7]. Successful alternatives are
confined systems, such as graded-index optical fibers [8],
trapped Bose-Einstein condensates [9], or nonlinear pho-
tonic crystals with defects [10], where stabilization of the
ring-shaped beam is induced by the corresponding confin-
ing potentials.

In this Letter we introduce a new approach to form stable
nonlinear, ring-profile vortices which is based on the con-
cept of Bessel optical lattices. It is known that spatial
modulation of the refractive index profoundly affects soli-
ton properties [11–13]. It was demonstrated recently that
optical lattices with tunable refractive-index modulation
depth and period can be induced optically in photorefrac-
tive materials [14–17]. To date, efforts have been devoted
to the investigation of solitons supported by lattices with a
honeycomb symmetry that are induced by intersecting
plane waves [14–18]. However, Bessel lattices with a
radial shape are also possible [19]. Importantly, the
Bessel concept provides localized refractive-index modu-
lations, in contrast to the extended shape of honeycomb
lattices. Here we address Bessel lattices imprinted in de-
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focusing cubic nonlinear media and uncover the properties
of higher-order excited vortex soliton states supported by
the structure. We show that vortex lattice solitons (VLS)
exist in these lattices and that they can be made dynami-
cally stable with suitable lattice strength. The VLS are the
nonlinear continuation of the lattice modes, but, in contrast
to such modes, VLS might extend over several lattice rings,
thus featuring a multiring bright shape.

We consider light propagation along the z axis in a bulk
medium with the defocusing cubic nonlinearity and trans-
verse modulation of the refractive index described by the
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FIG. 2. (a) Power of vortex soliton with m � 1 versus propa-
gation constant. (b) Amplitude profiles of solitons corresponding
to points marked by circles in (a). (c) Areas of stability and
instability (shaded) on the �p; b� plane for vortex solitons with
m � 1. (d) Stable propagation of vortex with m � 1, b � 0:7 at
p � 15 in the presence of white noise with variance �2

noise �
0:01. Cut of intensity distribution at � � 0 is shown.
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nonlinear Schrödinger equation for the normalized com-
plex field amplitude q:
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The longitudinal � and transverse �; � coordinates are
scaled to the diffraction length and input beam width,
respectively. The parameter p is proportional to the depth
of the refractive-index modulation, and the function
R��; �� � J21��2blin�

1=2r� with r2 � �2 � �2 stands for
the transverse profile of the refractive index; the parameter
blin is related to the radii of rings in the first-order Bessel
lattice. The optical field of the lattice-creating first-order
Bessel beam is given by J1��2blin�

1=2r� exp��iblin�� i��,
where � is the azimuthal angle. Such beams can be created
experimentally by holographic techniques [20], while vec-
torial interactions in a slow Kerr-type medium (including,
e.g., photorefractive crystals) can be utilized for trapping
and guiding beams of orthogonal polarization in the lattice
formed by the Bessel beam. We assume that the refractive-
index profile is given by the intensity of the first-order
Bessel beam as this case is favorable for vortex soliton
formation [see Fig. 1(a)]. Equation (1) requires nonlineari-
ties of different signs for soliton and lattice-creating
beams. In principle, such experimental conditions can be
met in the photorefractive semiconductor crystals such as
GaAs:Cr, InP:Fe, and CdTe:In, belonging to the �43m point
symmetry group [21]. These materials are transparent for
near infrared wavelengths and exhibit strong photorefrac-
tivity (e.g., n3r41 � 152 pm=V in CdTe:In), and the sign of
nonlinearity might be changed by a �=2 rotation of the
polarization direction. Notice that the peak value of the
photorefractive contribution to the refractive index in such
crystals could reach 	10�3 [that corresponds to p	 10 in
Eq. (1)] provided that sufficiently strong static electric field
is applied. Equation (1) admits several conserved quanti-
ties, including the power, or energy flow, U �R
1
�1

R
1
�1 jqj2d�d� . We also stress that Eq. (1) holds for

trapped Bose-Einstein condensates with repulsive interac-
tions [9].

We search for solutions of Eq. (1) in the form
q��; �; �� � w�r� exp�im�� exp�ib��, where b is the
propagation constant, m is the topological charge, and
w�r� is the real function. Substitution of the light field in
such a form into Eq. (1) yields
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r2
� 2bw� 2w3 � 2pRw � 0; (2)

an equation that we solved numerically with a relaxation
method. Mathematically, the soliton families are defined
by the propagation constant b, the lattice depth p, and the
parameter blin. Since one can use the scaling transforma-
tion q��; �; �; p� ! �q���;��; �2�; �2p� to obtain vari-
ous families of solitons from a given one, we set the
transverse scale in such way that blin � 2 and varied b
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and p. To analyze the dynamical stability of the soliton
families we searched for perturbed solutions with the form
q��; �; �� � �w�r� � u�r; �� exp�in�� � ���r; ��
exp��in��� exp�ib�� im��, where the perturbation
components u; � could grow with complex rate � upon
propagation, and n is the azimuthal index of the perturba-
tion. Linearization of Eq. (1) around a stationary solution
w�r� yields the eigenvalue problem:
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which we solved numerically.
First we address the properties of the ground-state sol-

itons with zero topological charge m � 0 (Fig. 1), which
physically correspond to the nonlinear continuation of the
lowest-order mode confined by the lattice. The power of
such solitons is a monotonically decreasing function of the
propagation constant [Fig. 1(b)]. The power goes to infinity
at b ! 0 and vanishes at the upper cutoff bco of the
propagation constant. Since the lattice profile has a local
minimum at r � 0, ground-state solitons have a small
intensity dip on their top [Fig. 1(c)]. At small power levels,
when b ! bco, ground-state solitons transform into linear
modes guided by the first lattice ring, while at b ! 0,
where defocusing nonlinearity dominates, the soliton di-
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FIG. 3. Three-dimensional intensity distributions for different
VLS with m � 1. (a) Power U � 9, lattice depth p � 15.
(b) U � 62, p � 15. (c) U � 124, p � 15. (d) U � 62, p �
10. The VLS shown in (a) corresponds to the quasilinear regime.
All figures are plotted with the same scale in the vertical axis.
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ameter grows, and it covers several lattice rings [compare
profiles at b � 2:6 and 0.5 in Fig. 1(c)]. As b ! 0, the
soliton diameter increases dramatically while its maximal
amplitude remains almost unchanged. The area of exis-
tence of ground-state solitons broadens monotonically
with the growth of lattice depth [inset in Fig. 1(c)].
Linear stability analysis revealed that ground-state soliton
solutions are stable in the entire domain of their existence,
as expected on physical grounds. To confirm the results of
the linear stability analysis we performed extensive nu-
merical simulations using Eq. (1) with the perturbed input
conditions qj��0 � w�r��1� ��r;���, where w�r� de-
scribes the stationary soliton, and ��r; �� is the random
function with Gaussian distribution and variance �2

noise. An
example of stable propagation of a perturbed soliton is
shown in Fig. 1(d).

We now consider VLS with topological charge m � 1
(Fig. 2). Note that such lattice solitons, as well as the
ground-state ones, exist because defocusing nonlinearity
and diffraction are balanced by the lattice that focuses
radiation into the region with higher refractive index.
Therefore, the Bessel lattice affords confinement of light
that is impossible in a uniform defocusing medium. The
power of the VLS is a monotonically decreasing function
of the propagation constant [Fig. 2(a)]. There exist zero
lower and positive upper cutoffs on the propagation con-
stant. The power of the VLS diverges as b ! 0 and van-
ishes as b approaches the upper cutoff bco. With an
increase of the power, the VLS get wider and cover
many lattice rings [Fig. 2(b)]. The existence domain of
VLS with unit topological charge is displayed in Fig. 2(c).
The width of the existence domain increases monotoni-
cally with growth of the lattice depth. At fixed lattice depth
p, the width of the existence domain on the propagation
constant reaches its maximal value for ground-state soli-
tons and decreases with the growth of the soliton topologi-
cal charge.

The central result of this Letter is that the VLS become
dynamically stable in suitable domains of their existence.
This is depicted in Fig. 2(c). In the plot we show the critical
value of propagation constant bncr above which no pertur-
bations with the azimuthal index n and nonzero real part of
growth rate were found. The precise structure of instability
regions [shaded area in Fig. 2(c)] is complicated. There
exist multiple narrow stability ‘‘windows’’ near the upper
cutoff even for shallow lattices, but we do not show them
here because stabilization close to the upper cutoff (where
soliton transforms into the linear mode guided by the first
lattice ring) is not surprising. Our simulations indicate that
VLS with m � 1 from the shaded area in Fig. 2(c) self-
destroy under the action of perturbation with the azimuthal
index n � 1, while the corresponding instability is of
oscillatory type with Re��� � Im���. Decay of the un-
stable VLS produces either radiation or sets of ground-
state solitons. When the lattice depth exceeds a critical
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value, of about pcr � 12:9, the instability regions cease to
exist and VLS become stable in the entire domain of their
existence. The stable propagation of a vortex lattice soliton
with m � 1 in the presence of broadband input noise is
illustrated in Fig. 2(d). To illustrate that the defocusing
nonlinearity is a necessary ingredient for the existence of
the stable VLS, Fig. 3 shows the three-dimensional shapes
of different VLS together with the linear mode supported
by the lattice. Notice the differences in beam profiles
introduced by the defocusing nonlinearity, in particular,
the multiring structure acquired by the VLS at moderate
and high powers.

Vortex lattice solitons with topological charge m � 2
were also studied. Their properties have much in common
with properties of solitons with m � 1 and are summarized
in Fig. 4. The instability domain is located near lower
cutoff on propagation constant. It also has complex struc-
ture with separate stability windows (not shown at the
plot), and its width decreases monotonically with growth
of the lattice depth. Notice that vortices from the shaded
area in Fig. 4(c) are affected by perturbations with azimu-
thal indexes n � 1; 2, which indicates that the spectrum of
harmful perturbations enriches with the growth of the
vortex topological charge. However, the important result
uncovered is that for deep enough lattices a broad stability
domain appears too, as shown in Fig. 4(c). An illustrative
example of the propagation of a stable ring-shaped vortex
soliton with m � 2 is presented in Fig. 4(d). We considered
also vortex solitons with higher topological charges and
found stability conditions. The higher the topological
charge of the vortex is, the deeper the lattice required for
its stabilization is. It is worth mentioning that we also
found higher-order ‘‘twisted’’ vortex and ground-state
modes whose field w�r� alternates on successive lattice
2-3



FIG. 4. (a) Power of vortex soliton with m � 2 versus propa-
gation constant. (b) Amplitude profiles of solitons corresponding
to points marked by circles in (a). (c) Areas of stability and
instability (shaded) on the �p; b� plane for vortex solitons with
m � 2. (d) Stable propagation of the vortex with m � 2, b � 1:6
at p � 40 in the presence of white noise with variance �2 �
0:01. Cut of intensity distribution at � � 0 is shown.
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rings, but their stability analysis is beyond the scope of this
Letter. Finally, we also studied VLS in Bessel lattices
imprinted in focusing nonlinear media, but we found
them all to be unstable against azimuthal modulational
instabilities. Such instability might be suppressed in azi-
muthally modulated lattices, a possibility that is open for
future research.

To summarize, optical lattices induced by nondiffracting
Bessel beams in media with defocusing nonlinearity have
been shown to be able to support stable ring-profile vortex
solitons. The existence of such bright-shaped vortex lattice
solitons, which do not self-destroy by azimuthal modula-
tional instabilities, is a rare phenomenon in physics and is
an important example of the variety of phenomena af-
forded by Bessel optical lattices. The results reported are
relevant not only for nonlinear optics but also for suitable
Bose-Einstein condensates trapped in Bessel lattices with
repulsive interatomic interactions. We note that the stabi-
lization of vortex solitons by circular steplike potentials
[22] and by nonlocal nonlinearities [23] has also been
discovered very recently, after submission of our
manuscript.
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