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Order-to-Chaos Transition in Rotational Nuclei
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We have developed a new method to study the order-to-chaos transition in rotational nuclei.
Correlations between successive � rays are used to determine the average complexity of the intermediate
levels and thereby the ratio of the interaction potential between levels to the level spacing. The measured
ratios, 0.15 to 1.5, span the range from nearly fully ordered to nearly fully chaotic.
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FIG. 1. A sketch of the mixed levels and transitions involved in
rotational and compound damping. A gate is shown populating
one component of a level having spin I.
Chaos in quantal systems is not easily defined; however,
a great deal of study has gone into comparing quantal
systems with classical analogs, e.g., Sinai’s billiard [1].
The result is some well established criteria for quantal
systems that are thought to indicate whether the corre-
sponding classical system would be ordered or chaotic.
One of these is the so-called nearest neighbor distribution
(NND), i.e., the distribution of energy separations between
adjacent states having the same set of conserved quantum
numbers (e.g., spin and parity). This method evaluates the
fluctuations in the level spacings, which get smoothed out
as a system becomes chaotic. The ordered levels are un-
correlated and thus have random energies which give ex-
ponentially decreasing numbers of energy spacings as the
spacing size increases (Poisson). The smoothing can be
understood as level repulsion arising from the mixing of
states which eventually results in a skewed Gaussian NND
(Wigner or GOE). It has been conjectured [1] that the
Gaussian orthogonal ensemble (GOE) provides a complete
description of quantal chaos in systems with time reversal
symmetry. The mixing depends on the ratio, v=d, where v
is the average interaction potential between the levels and
d is their average energy separation. We believe this ratio
can be measured directly and reliably in some rotational
nuclei.

Early results in nuclei showed that near the neutron
binding energy in a number of heavy nuclei ( � 8 MeV
of excitation energy) the behavior is essentially chaotic [2],
whereas, near the ground state in reasonably heavy de-
formed nuclei it is mainly ordered [3,4]. The Yb nuclei are
in this region, and we study them using heavy-ion fusion
reactions, which bring high angular momentum (up to
�70 �h) and excitation energy ( � 80 MeV) into the fused
system. In these nuclei neutron evaporation quickly brings
the average energy down to about the neutron binding
energy, and the angular momentum and remaining energy
are removed in a �-ray cascade down to the ground state.
We study this cascade which covers the range where chaos
sets in. The Yb nuclei were chosen because nuclei in this
region are deformed and exhibit rotational behavior. The �
rays in rotational cascades have correlations that are es-
sential for this measurement.
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The physics that generates nuclear �-ray spectra in
heavy nuclei is based on the motion of individual nucleons
in the mean field generated by all the nucleons (e.g.,
Nilsson [5]). A residual interaction potential, v, is added,
which is part of the nucleon-nucleon interaction that is not
included in the mean field. In the Yb region, the mean-field
states are ordered at very low temperatures [6], and as a
result they each have distinctive rotational properties (emit
a single � ray of a characteristic energy), together with
associated quantum numbers. With increasing excitation
energy the separation between states, d, becomes small and
the residual interaction mixes these states (compound
damping) over an energy region whose width is called
the spreading width, ��. It is this mixing that generates
the order-to-chaos transition we are discussing. The rota-
tional properties are then also mixed (damped) so that each
level now emits a spread of � ray energies whose width is
the rotational damping width, �rot [7]. It has been recog-
nized for some time that this rotational damping can pro-
vide an observable signal for the onset of chaos [6,8–10].

The relationship between these two types of damping is
illustrated in Fig. 1. In the region of mixed levels a level (of
spin, I) with three components is shown on the right side of
Fig. 1. Each of these components can emit a rotational �
ray with its characteristic energy. The level can then emit
1-1  2005 The American Physical Society
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FIG. 2. The relationship of c2a�a0� to v=d is shown for Eq. (1)
(solid line) and the random matrix (dashed line).
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any of these � rays, which generates a distribution of �-ray
energies, whose width is �rot. However, a new feature
noticed by Matsuo [8] is that the compound damping can
also show up in these spectra. This is illustrated on the left
side of Fig. 1, where two of the components are schemati-
cally spread over three final states. The width of this
distribution is ��, which, in the nuclei and excitation-
energy range we are discussing, is generally smaller than
�rot, as illustrated. It is also possible that the final state is
unmixed as illustrated by the third component, and this
results in a transition with a sharp (unspread) energy,
characteristic of the well known discrete bands near the
ground state. It would be difficult to separate these com-
ponents in the full spectrum.

However, in a coincidence spectrum the first � ray (the
‘‘gate’’) will come in via one of the three components as
illustrated in Fig. 1. The level can then decay via any of the
components, but if it decays by the same (entry) compo-
nent, it will have a narrow energy correlation with the gate
transition characteristic of that component: either unspread
(discrete) or spread only by the distribution of the final
states, ��. If it decays via either of the other two compo-
nents, the width will be comparable to �rot. Thus, if the
components have equal amplitudes, the probability for the
narrow structure, Pnar, will be one-third and that for �rot

will be two-thirds. This sensitivity to the complexity of the
wave function suggests a connection between Pnar and
chaotic behavior, and we want to explore that connection.

Our assumption is that Pnar is just c2a�a0�, the square of
the amplitude of the (unmixed) entry component, a, in the
(mixed) decaying state, a0, and, since any component can
be the initial component, we are measuring an average
value. The spreading of the amplitude of an initial state,
a, over an extended range of equally spaced levels has been
treated [11] and leads to a Breit-Wigner distribution in
energy for the strength, c2a�E�, with a width, ��, given by
Fermi’s golden rule. However, Pnar depends on the strength
remaining in the initial state (at essentially the initial
energy). This is related to the total strength lost to other
states, but not specifically to the number of other states nor
their energy distribution. With only the approximation that
Ea � Ea0 , we get

1=Pnar � 1=c2a�a0� � 1� ��v=d�2: (1)

Each measured value of Pnar depends on a single variable,
v=d, and this is important since v=d is directly related to
the chaotic behavior of a system.

To relate v=d to chaotic behavior we diagonalize a
symmetric random matrix [12]. The diagonal elements
are chosen randomly over an energy interval �E< 0<
E which defines both d and the initial NND (Poisson). The
off-diagonal elements are chosen randomly from a
Gaussian distribution centered at 0 and having an rms
value, v. For any v=d this gives a set of levels from which
standard measures of chaotic behavior can be evaluated.
04250
For large v=d the behavior is chaotic with a Wigner NND.
This model also gives a relationship between c2a�a0� and
v=d, where c2a�a

0� is the probability of the initial central
state in the mixed central state. To get a good average value
of c2a�a0�, we made 500 diagonalizations of 49	 49 ma-
trices for each v=d value, and this relationship is shown in
Fig. 2 compared with that from Eq. (1). The agreement is
good, giving us confidence that Eq. (1) and the random
matrix are addressing the same problem.

The data were taken [13] using Gammasphere at the
LBNL 88-Inch Cyclotron to record � rays from the reac-
tion of 215 MeV 48Ca projectiles on a 1 mg=cm2 target of
124Sn. This reaction forms the fusion product, 172Yb, which
decays into the product nuclei, 168;167;166Yb, with yields of
roughly 20%, 40%, and 40%, respectively. Events were
stored if five or more clean (no hit in the Compton sup-
pressor) � rays were in coincidence. About 2	 109 such
events were recorded and sorted into a 2D (E�-E�) matrix.
Correlation spectra were generated from the 2D matrix
using the COR procedure [14] which subtracts an uncorre-
lated background from the data. For a gated spectrum this
background is the full-projection spectrum normalized to
the same area.

Our simulation generates the cascade of � rays follow-
ing the fusion reaction and has been previously described
[13]. A very brief summary is given here. The cascade
starts from a spin and an E
 (E
 is the excitation energy
above the lowest energy level in the nucleus having that
spin) randomly selected from distributions based on mea-
sured data. The cascade is a competition between E1
statistical � rays and E2 rotational � rays (whose proper-
ties were taken from measured data or from standard
estimates [15]). Values for �rot and �� had the forms
0:0033I�E
�1=4 and 0:029�E
�3=2, respectively. These val-
ues have the same functional form and coefficients within
10%–20% of those given in Ref. [7]. We used Pnar from
Eq. (1), and in order to fit all the gates with a single
simulation we took v=d proportional to �E
�3=2 (the de-
pendence expected in leading order, i.e., in mixing two-
particle–two-hole states) and adjusted the coefficient to fit
1-2
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the intensities of the narrow components. When E
 is less
than 0.2 MeV we make the � rays discrete, for which we
randomly select a band from among the lowest two or three
bands that are known to very high spins in each of the three
Yb nuclei.

The data (black) and simulations (red) from this work
are shown in Fig. 3 for eight gate energies. These spectra
are all CORs and are what we call ‘‘shift-and-add’’ spectra:
the gates cover a 60-keV range consisting of 15 4-keV
wide channels. As each gate channel moves up or down,
we move the coincident spectrum up or down by exactly
the same amount. Thus the gate always occurs at the same
channel in the coincident spectra, and we have 4-keV
resolution for gate-related effects, whereas other effects
tend to be smeared out. This is what we want.

For the higher-energy gates in Fig. 3 there is a broad
peak that is a combination of the feeding and rotational
correlations. This broad peak becomes smaller as the gate
gets lower in the feeding region and actually becomes
negative in the lowest two gates which are below all the
feeding. In our previous work we called this negative
correlation the secondary feeding correlation [13] and
used it to get information about the feeding.
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FIG. 3 (color). The data (black) and simulation (red) spectra
(see text) are treated identically. The gate energy in MeV is at the
upper right in each plot and the Pnar value is at the lower right.
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Superposed on this broad feature is a narrow valley and
ridge structure which gets progressively larger as the gate
energy decreases. In detail this structure arises because a
deexciting rotational band (discrete or compound damped)
emits a regular set of � rays (like a picket fence) and gating
on one of these results in a spectrum missing this energy,
i.e., with a valley. The transitions adjacent to the gate are
seen as ridges which continue away from the gate energy as
long as the population stays in the band and the � rays are
not smeared out in energy. This is what we have called the
narrow structure whose intensity (roughly the area of the
valley) indicates how much of the population enters and
decays via the same component of the wave function.
(Note that these structures can be easily resolved although,
due to the high level density, individual � rays above
�1 MeV are largely unresolvable using present detectors.)
Early studies of this narrow component showed it was a
separate structure superposed on the rotational-damped
spectrum and rough measurements of its intensity were
made, in general agreement with the present values [16].

Measurements of Pnar are simple and reliable. They do
not require identifying separately the compound-damped
and discrete � rays. Both of these �-ray types arise from
events that enter and decay via the same component of the
wave function, and they produce similar valleys in the
spectrum. Thus, measuring Pnar is much easier and more
reliable than measuring ��, for example, which does re-
quire identification of the above �-ray types. In fact,
measuring Pnar does not necessarily require the use of a
simulation code. With the statistical � rays subtracted and
the spectrum unfolded to remove Compton-scattered �
rays, Pnar can be determined by integrating the area of
the valley and comparing with the area corresponding to
one transition as has been done [16]. We believe using a
simulation is a more reliable way to determine Pnar.

To measure v=d we ensure that the simulation fits the
data (e.g., Fig. 3) and then record for each gate the fraction
of the rotational � rays that make up the narrow component
(i.e., the compound-damped and discrete � rays). This is
the average Pnar, and we then solve Eq. (1) for the average
v=d. This can be done for any gate energy and width, and
there is very little change with gate width up to 60 keV.
Eight values of Pnar are given in Fig. 3, and a ninth value of
0.82 was measured for a 0.6 MeV gate. The uncertainties
on these values are estimated to vary from �10% for the
lowest gate (0.6 MeV) to �30% for the highest. All nine
v=d values are given on Fig. 4 and the uncertainties
corresponding to those on Pnar are all �20%. At very
low energies ( � 0:5 MeV) the resolved discrete lines
become strong, and we do not always reproduce these
well because we include only two or three bands per
nucleus. This should have little effect on our Pnar values.
Another problem is that our simulation indicates there
should be extensive motional narrowing [7], especially at
the highest �-ray energies. This would affect �rot but
1-3
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FIG. 4 (color online). The distributions, NND (upper) and �3

(lower), for the measured v=d values (indicated) together with
the Poisson and Wigner limits (heavy lines). Starting with the
first gate alternate gates are dashed to help distinguish them.
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should not affect Pnar, and we have not included motional
narrowing in this simulation.

The random matrix described was diagonalized for our
measured v=d values. The NND plots are shown in the
upper part of Fig. 4, where the abscissa is in units of the
average level spacing. The �3 statistics of Dyson and
Mehta [17] are shown in the lower part of the figure, where
�3 is a measure of the fluctuations over an energy region of
length, L, also in units of the average level spacing. This
latter plot shows most clearly that our measured points
span the onset of chaotic behavior in these nuclei. The
behavior becomes chaotic as v=d becomes �1 as has been
pointed out [18]. Of course, a single average v=d value
cannot give a complete description of the nuclear behavior:
we cannot tell, for example, whether the spread in v=d
values is small or large. Nor can we get details about the
variation of �3 with L—we see only the behavior given by
the average v=d value. However, our procedure gives a
simple and direct measure of the chaos-to-order transition
along the average deexcitation pathways in these nuclei.

The average Pnar values have been discussed until now
because they depend on the area of the valley which is
unambiguously determined when the fit to the data in that
region is good. The simulation can provide much more
information although it is not generally so well determined.
Additional results indicate that there is a large spread in E


for the � rays in each gate and thus a large spread in v=d
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values. It would be more meaningful to relate v=d to E


and, since Pnar and v=d depend only on E
 in the simula-
tion, there are analytic formulas for E
:

E
 � 0:91��1� Pnar�=Pnar

1=3 � 2:0�v=d�2=3: (2)

The coefficients in Eq. (2) come from fitting the present
data. The average values for E
 vary from 0.5 to 2.6 MeV
for our gates; however, they depend to some extent on the
simulation and its inputs, resulting in uncertainties that are
difficult to evaluate at present.

This is a new way to explore the order-to-chaos transi-
tion in nuclei. It looks directly at a property of the wave
function rather than at level spacings and can often be used
where measuring the energy-level spacings is not possible.
There are some obvious ways to extend these measure-
ments: studying other nuclei, using experimental tags to
define more specific decay pathways, and/or developing
the simulations to establish and improve their reliability. It
would also be interesting to look for other correlated
quantities (like our �-ray energies) that could be exploited
to provide information on chaotic behavior or other
properties.
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