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The fluid of two-dimensional hard disks is investigated over a range of densities by Monte Carlo
simulations in order to detect and characterize structural changes which take place when the condition of
freezing and melting is approached. A novel method is proposed based on the use of the Voronoi
tessellation and a certain shape factor which turns out to be a clear indicator of the presence of different
underlying substructures (domains). Close to the freezing condition the probability distribution of the
shape factor develops a second distinct maximum corresponding to a predominant presence of near-
regular hexagons, whereas the original peak, having its origin primarily in pentagons and distorted
hexagons, diminishes and disappears at melting density.
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With changing thermodynamic conditions a restruc-
turing of molecules in fluid systems may take place lead-
ing ultimately to a phase transition. Such changes may
be difficult to quantify and hence also difficult to detect.
This applies particularly to the fluid-solid phase tran-
sition in two-dimensional systems, which differs qualita-
tively from that in three-dimensional systems [1,2] and
whose nature remains an unresolved problem. An open
question is whether melting in 2D systems occurs as a
common one-step first-order phase transition or whether
it goes via a continuous two-step scenario as proposed
by Halperin and Nelson [3,4] and Young [5] using the
ideas of Kosterlitz and Thouless [6]. According to the
KTHNY theory, the first continuous transition transforms
the solid into a hexatic phase (the phase with the long-
range orientational but no positional ordering), and the
second transition transforms then the hexatic phase to an
isotropic phase. The problem intimately associated with
the above question is what structural rearrangements of
molecules take place in the transition region and their
characterization.

The common technique to monitor the fluid-solid tran-
sition on the microscopic level has been an analysis of
the bond-orientational order parameter (for its definition
and recent results see, e.g., [7,8], and references therein).
Another possibility is to use Voronoi tessellation and
make use of certain properties of Voronoi cells (e.g.,
average edge length, surface, etc.), but the results have
provided only a vague picture (see, e.g., [9,10]). Thus,
despite a large number of computer simulation results,
even for the simplest possible 2D system, the fluid of
hard disks, no consensus about the existence of a hex-
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atic phase and associated structural changes has been
reached.

It has been known that the pair correlation function of
the hard-disk fluid starts exhibiting a shoulder within about
5% of freezing (which occurs at the packing fraction about
n = 0.69). Truskett et al. [11] consider this phenomenon a
precursor of a phase transition and analyzed visually con-
figurations in this region. According to their analysis this
shoulder seems associated with the development of a dis-
tinct next-nearest-neighbor shell.

As an attempt to find a more mathematical and quanti-
tative characterization of these structural changes near the
phase transition region, we consider also the fluid of hard
disks and use the Voronoi tessellation but employ a certain
shape factor of Voronoi polygons, £, to analyze its struc-
ture. We show that this factor is able to identify the
occurrence of different domains. Whereas at low densities
the distribution of { (the occurrence probability of different
2D figures) exhibits a broad and flat maximum, at pretran-
sition conditions the distribution of ¢ develops a second
distinct maximum at lower values of / indicating the
existence of domains made up of more regular (round)
figures; the original maximum then gradually diminishes
with increasing density and finally disappears in the crys-
talline phase.

To study the structure of hard-disk fluids we used the
standard Metropolis Monte Carlo simulations in an NVT
ensemble with 256 and 2500 particles in a rectangular cell
with the aspect ratio /3:2 [12]. The former number of
particles is a typical value used in simulations, and the
latter number was used to check a possible size dependence
of results; no detectable difference was found. After a long

© 2005 The American Physical Society



PRL 94, 040601 (2005)

PHYSICAL REVIEW LETTERS

week ending
4 FEBRUARY 2005

equilibration period about 3.5 X 10* equilibrium configu-
rations were analyzed using the Voronoi tessellation. To
characterize the Voronoi cells we used a shape factor
defined as

C?
¢ 47S’ 0
where C is the circumference of the cell and S is its
surface. (We note that in the case of figures made up of
line segments this shape factor is identical to the parameter
of nonsphericity used in convex figure geometry [13].)
For circles { = 1 and for all other shapes { > 1. For a
square ¢ = 1.273, for regular pentagons { = 1.156, and
for regular hexagons ¢ = 1.103. If the regular hexagon is
distorted to a figure with the length-to-breadth ratio 2:1,
then £ = 1.836.

In Fig. 1 we show the pair correlation function, g(r), for
a number of densities. With increasing density g(r) devel-
ops a shoulder (at about 7 = 0.65) which ultimately
evolves to a secondary peak. The question is what struc-
tural rearrangement of the molecules gives rise to this
phenomenon.

In Fig. 2 we show the distribution of the shape factor for
the same series of densities as in Fig. 1. As one could
expect, at low densities the particles are distributed quite
randomly, no specific figures are formed, and we thus get a
very flat curve with a broad maximum (7 = 0.3). As the
density increases, the distribution becomes more localized
around the maximum which simultaneously moves to
lower values of ¢ and a shoulder on its rising portion
also occurs (n = 0.5). With a further increase of density
the shoulder develops to a distinct second maximum (7 =
0.65). It means that more regular cells can be observed and
their occurrence starts prevailing. This is also the region
where the pair correlation function starts exhibiting a
shoulder; see Fig. 1. For densities about n = 0.7 (i.e., in
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FIG. 1. Pair correlation function of the fluid of hard disks at
different densities.

the vicinity of the melting density, n = 0.716 [7]) and
higher the original maximum (high values of {) disappears
and the low {-value maximum sharply rises and its loca-
tion moves to £ = 1.1.

To understand these changes, we show in Fig. 3 snap-
shots of configurations at n = 0.50, 0.65, and 0.70. To
clearly distinguish domains made up of different fig-
ures we classify the polygons according to their
values as follows: (i) class A polygons are those within
the range defined by the location of the minimum on
the ¢ distribution, ¢4 < iy = 1.159 (which is found
to be only marginally density dependent); (ii) class B
polygons are those within the range from the minimum
to { = 1.25; (iii) class C polygons are those with / > 1.25.
(The upper bound, ¢ = 1.25, has been set so that at n =
0.65, i.e., at the density at which the height of the two
maxima are roughly the same, the number of figures be-
longing to classes A and B are, approximately, the same.
The population of these two classes then changes with
density.)

To differentiate polygons belonging to different
classes we use color coding: polygons of class A are
indicated by a darker interior, those of class B by a lighter
interior, and the remaining polygons have the white
interior. We see that for 7 = 0.5 we observe a mixture of
various polygons, although small domains made up of
pentagons and hexagons, respectively, can also be de-
tected. For nn = 0.65 we already find two large do-
mains: one made up predominantly of more or less regular
hexagons (figures belonging to class A), and the other
made up of distorted hexagons and pentagons (figures
belonging to class B). At density n = 0.7, i.e., at den-
sity slightly higher than the freezing density, only small
islands of pentagons and distorted hexagons are found,
whereas the overwhelming majority of the molecules
form near-regular hexagons. Ultimately, for densities
higher than n = (0.716 we end up with configurations
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FIG. 2. Probability distribution of the shape factor in depen-
dence on density.
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FIG. 3. Snapshots of configurations at n = 0.5 (a), n = 0.65 (b), and = 0.7 (c), with Voronoi cells. Darker cells correspond to
polygons of class A [{ € (1.108; 1.159)], lighter cells to polygons of class B [{ € (1.159; 1.25)], and the numbers indicate the type of

polygon (number of vertices).

where only more or less regular hexagons are found (the
peak of ¢ approaches the value 1.108), i.e., in the ordered
crystalline phase.

The common tool to describe the structure of fluids, the
pair correlation function, provides only a sort of an aver-
age arrangement and is thus not able to characterize in
detail tiny structural effects. A better indicator of such
details and structural changes is usually the structure fac-
tor, but it tells only that there are patches of another phase.
Similarly, the individual characteristics of Voronoi cells,
as, e.g., the average surface, circumference (edge length),
etc., are also of little use yielding just smooth curves with
one broad maximum. However, we have found that the
simultaneous use of the circumference and surface com-
bined into a shape factor is sensitive to changes in the 2D
structure and clearly marks domains made up of different
figures. Particularly, it gives a clear physical picture of
competition between less and more ordered domains and
of gradual building of a regular hexagonal arrangement in
the region of the phase transition. The question whether
some of its features, as, e.g., the inflection point on the
distribution through which the second maximum disap-
pears, may have deeper meaning and can be also related,
e.g., to the melting, should be a subject of further inves-
tigations. The proposed method based on the use of a shape
factor may also be conveniently used to analyze the struc-
ture of fluids at interface, i.e., of pseudo-two-dimensional
layers.
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