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Quantum computation can be performed by encoding logical qubits into the states of two or more
physical qubits, and control of effective exchange interactions and possibly a global magnetic field. This
“encoded universality”” paradigm offers potential simplifications in quantum computer design since it
does away with the need to control physical qubits individually. Here we show how encoded universality
schemes can be combined with fault-tolerant quantum error correction, thus establishing the scalability of

such schemes.
DOI: 10.1103/PhysRevLett.94.040507

In the ‘“standard paradigm” of quantum computing
(QC) a universal set of quantum logic gates is enacted
via the application of single-qubit gates, along with a
nontrivial (entangling) two-qubit gate [1]. It is in this
context that the theory of fault-tolerant quantum error
correction (QEC) and the well-known associated threshold
results (e.g., [2,3]) have been developed. These results are
of crucial importance since they establish the in-principle
viability of QC, despite the adverse effects of decoherence
and inherently inaccurate controls. However, some of the
assumptions underpinning the standard paradigm may
translate into severe technical difficulties in the laboratory
implementation of QC, in particular, in solid-state devices.

Any quantum system comes equipped with a set of
“naturally available” interactions, i.e., interactions which
are inherent to the system as determined by its symmetries,
and are most easily controllable. For example, the symme-
tries of the Coulomb interaction dictate the special scalar
form of the Heisenberg exchange interaction, which ap-
pears in a number of promising solid-state QC proposals
[4]. The introduction of single-spin operations requires a
departure from this symmetry and typically leads to com-
plications, such as highly localized magnetic fields [5],
powerful microwave radiation that can cause excessive
heating, or g-tensor engineering/modulation [6]. For these
reasons the “encoded universality”” (EU) alternative to the
standard paradigm has been developed, along with other
alternatives [7]. In EU, single-qubit interactions with ex-
ternal control fields are replaced by ‘“‘encoded” single-
qubit operations, implemented on logical qubits via control
of exchange interactions between their constituent physical
qubits. It has been shown that such an exchange-
only approach is also capable of universal QC, on the
(decoherence-free) subspace spanned by the encoded qu-
bits [8]. Explicit pulse sequences have been worked out for
the implementation of encoded logic gates in the case when
only the exchange interaction is available [9,10], which can
be simplified by assuming the controllability of a global
magnetic field [11].
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The issue of the robustness of EU-QC in the presence of
decoherence has been addressed before [10], e.g., using a
combination of decoherence-free subspaces (DFS’s) and
dynamical decoupling methods [12]. However, in contrast
to the case of the standard paradigm, so far a theory of
fault-tolerant QEC has not been developed for EU-QC. The
difficulty originates from the fact that EU constructions use
only a subspace of the full system Hilbert space and hence
are subject to leakage errors to the orthogonal subspace. In
particular, standard QEC theory breaks down under the
restriction of using only a limited set of interactions, since
these interactions are not universal over the orthogonal
subspace, and cannot, using preestablished methods, be
used to fix the leakage problem. Here we provide a fully
constructive method for extending the theory of fault-
tolerant QEC so as to encompass EU-QC.

Encoded universality.—We first briefly review EU in the
context of a particularly simple encoding of one logical
qubit into the states of two neighboring physical qubits:
10,); =105 1) ®115), [1.); = 15;-1) ®0,;), where |0) (/1))
is the +1 (—1) eigenstate of o,. We refer to this encoding
as a “‘two-qubit universal code” (2QUC), and more gen-
erally to EU encodings involving n qubits per logical qubit
as “nQUC.” In Ref. [11] it was shown how to construct a
universal set of encoded quantum logic gates for the
2QUC, generated from the widely applicable class of
exchange Hamiltonians of the form H., =}, ;H;;, where

Here X;, Y;, Z; denote the Pauli matrices o,, o, o, acting
on the ith physical qubit. The Heisenberg interaction is the
case J;; = ij (e.g., electron and nuclear spin qubits [4]),
while the XXZ and XY models are, respectively, the cases
Jij # Ji; # 0 (e.g., electrons on helium [13]) and J;; #
0, Jf,» = (0 (e.g., quantum dots in cavities [14]). In essen-
tially all pertinent QC proposals one can control the J;; for
li — j| = 2, though not independently from J ij- As usual in

the EU discussion we do not assume that the technically
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challenging single-qubit operations of the form
S fH0)X; + f(1)Y; are available. We do assume that a
(global) free Hamiltonian H, = Zl 5 w;Z; with nondegen-
erate w;’s can be exploited for QC in the sense that the w;
are collectively controllable, e.g., via the application of a
global magnetic field. Logical operations on and between
2QUC-encoded qubits (denoted by bars) were found in
Ref. [11]. For example, single-encoded-qubit gates [en-
coded su(2)] are generated by X,;_ 12; and Zsi_ 1,215
where X, =1(X.X; +Y.Y)), Z; —1(z—z) Then

eXP(*iWYZi—I,z,')
[0,.); |1,);. Importantly, for all cases captured
by H;; universal encoded QC is possible via relaxed control
assumptlons, namely, control of only the parameters J; ;1
and a global magnetic field. These control assumptions
(and measurements, discussed below) are the sole ones
we make in this work.

Hybrid 2QUC-stabilizer codes.—Our solution for fault-
tolerant EU involves a concatenation of 2QUC and stabil-
izer codes of QEC theory [1,2]. A stabilizer code is the
subspace of the Hilbert space of n qubits that has eigen-
value +1 under the action of a given Abelian subgroup of
the n-qubit Pauli group. The Pauli group is the group of
n-fold tensor products of the Pauli matrices, including the
identity matrix. We define a hybrid stabilizer-nQUC code
(henceforth, “S-nQUC”) as the stabilizer code in which
each physical qubit state |¢) = «|0) + B|1) is replaced by
the nQUC qubit state |¢;) = a|0y) + Bl1y) (concatena-
tion). With this replacement X;, Y;, Z; must be replaced by
their encoded versions X, Y;, Z;. Thus, physical-level op-
erations on the stabilizer code are replaced by encoded-
level operations on the 2QUC. This replacement rule also
applies to give the new stabilizer for the S-nQUC. For
example, suppose we concatenate the 2QUC with the
three-qubit phase-flip code |+)®3,|—)®3, where |*) =
(|0y = |1))/+/2. The stabilizer of the latter is generated by
X X5, X5X5. Then the stabilizer for the hybrid S-2QUC

{100) = 55101 + 1), 1) = 515 (01) = [10)} is
just S = {X1X2, X2X3}, with Xi = le',lel'.

We assume that it is possible to make measurements
directly in the 2QUC basis. This involves, e.g., distinguish-
ing a singlet (J01) — [10))/~/2 from a triplet state (J01) +
[10))/+/2, or performing a nondemolition measurement of
the first qubit in each 2QUC logical qubit; these tasks are
currently under active investigation, e.g., [15]. In conjunc-
tion with the encoded universal gate set, it is then evidently
possible to perform the entire repertoire of quantum op-
erations needed to compute fault tolerantly on the 2QUC,
using standard stabilizer-QEC methods [1,2]. However,
because our stabilizer code is built from 2QUC qubits, it
is, a priori, not designed to fix errors on the physical qubits.
Thus, our next task is to consider these physical-level
erTors.

Physical phase flips.—Consider a physical phase-flip
error afflicting an S-2QUC state |¢y), e.g., on the first

physical qubit. Its action in the case of the example above
is 0y) = 535 (101) = [10))(|01) + [10)®* = [0p), |[1y) =
N-(IOI) + |10))(|01) —[10)®2 = [1{,). Since [0,) and
[1,) are orthogonal, there exists a measurement that dis-
tinguishes between them. From the general theory of sta-
bilizer codes we know that this is a measurement of one of
the generators of the S-2QUC stabilizer. Indeed, it is
simple to verify that measurement of either X,;X, or
X,X; (at least one of which anticommutes with Z;, 1 <
i = 6) will reveal the location of any single-physical-qubit
phase flip, without collapsing the (“‘erred”) state «|0},) +
Bl17,). Moreover, one readily verifies that arbitrary prod-
ucts of phase-flip error operators anticommute with at least
one of the stabilizer generators X, X,, X, X or have a trivial
effect on «|0y) + B|1y). Therefore, the correctibility con-
dition of errors on stabilizer codes [1,2] is satisfied, and
hence a phase-flip error on any physical qubit in a hybrid
S-2QUC is always correctible.

Physical bit flip.—In contrast to physical-level phase
flips, bit flips, {X5;_1, Y21, X;, Y»;}, cause leakage from
the 2QUC subspace via transitions to the orthogonal,
“leakage” subspace spanned by {[0;,_0,,), [15;_ 11,0}
Any gate of the form exp(—ifX,;_12;), exp(—i6Zy;—1 ;)
acts as identity on this subspace and hence will fail to
produce the desired effect if used to implement standard
QEC operations.

Two-physical-qubit  errors.—Finally we need to
consider the case of two-physical-level errors affecting
two qubits of the same 2QUC block. Listing all possible
such errors we find that (i) {XX =X XY = —Y,
YX=Y,YY =X,ZZ = —1I} act as single-encoded-qubit
errors and thus are correctible by the stabilizer QEC and
(il) {XZ,YZ, ZX, ZY} all act as leakage errors. We con-
clude that our task is to find a way to solve the leakage
problem by using only the available interactions. We do
this in two steps: first we construct a unitary ‘‘leakage
correction unit” (LCU) assuming perfect pulses; then we
consider fault tolerance in the presence of imperfections in
the LCU and computational operations.

Leakage correction unit.—Let physical qubits 1, 2 (3, 4)
encode a data (ancilla) 2QUC qubit. We assume that we
can reliably prepare the ancilla in the state |0;). We now
define an LCU as the unitary operator L whose action, up
to a global phase, on a data (first) and ancilla (second)
2QUC qubit is [10]

L|0L>|OL> = |0L>|OL>’ L|2L>|OL> = |0L>|2L>,
LI1)10,) = [1.)[0,), L13,)10,) = [0.)13.),

where |2;) = 100), |3,) = [11). The action of L on the
remaining 12 basis states is completely arbitrary. The LCU
thus conditionally swaps a leaked data qubit with the
ancilla, resetting the data qubit to |0, ); this corresponds
to a logical error on the data qubit, which can be fixed by
the stabilizer code. Note that L entangles the data and
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FIG. 1 (color online). Analytically derived circuits for the v/SWAP’ operation. Time flows from left to right. Data-physical qubits are
numbered 1, 2, while 3—6 are ancilla-physical qubits. Ancilla qubits 5 and 6 are added to allow parallel operations within each LCU,
which reduces the time overhead by a factor of 2. (a) The circles represent a possible arrangement of qubits so that all are nearest
neighbors throughout the pulse sequence. (b) vSWAP' in the XY model: an angle ¢ under an arrow connecting qubits i, j represents the
pulse exp(—i¢pX; ;). (¢) VSWAP' in the Heisenberg or XXZ model: an angle ¢ under a solid (checkered) arrow connecting qubits i, j
represents the pulse exp(—i¢Z;Z;) [exp(—i oX; )]. These pulses are, in turn, realized with the pulse sequence in (d), where the angle
2¢ in (d) corresponds to the angles */4, /2 used in circuit (c). (d) Refocusing the Ising terms: each arrow represents a
Heisenberg or XXZ exchange interaction between corresponding qubits. The choice +75 [—7g] for the central pulse selects
exp(—i2¢Z,Z;), with ¢ =1 [ J5(0dt [exp(—i2¢X;;), with ¢ =2 [ J,(1)dt] used in circuit (c). Qubit indices are i, j =
1,2,3,4 and k = 5, 6. The vertical bars represent global magnetic fields exp(—iY ;6,Z,), where 6, = (upg;/h) [™ Bjf(t)dt, in which
B; is the z component of the global magnetic field at spin / and f(¢) is the global time dependence of the magnetic field. The pulse

duration 75 (indicated above the vertical bars) is adjusted such that 8, — 0, = 7/2.

ancilla qubits, which means that we can determine with
certainty if a leakage correction has occurred or not by
measuring the state of ancilla. The generalization of Eq. (2)
to an arbitrary nQUC is clear: L must conditionally swap
any “leakage state” with |0,) [10]. Constraints for the
construction of L in the case of the 3QUC and
Heisenberg-only computation were given in Ref. [10].
We next show, for the first time, how to construct the
transformation L explicitly from the available interactions.
Our construction is limited to the 2QUC case, but note that
the 2QUC encompasses essentially all exchange interac-
tions of interest [11], so that this is not a severe restriction.
Finding explicit constructions for nQUCs with n = 3 is an
open problem and will involve much higher overhead than
the n = 2 case.

We decompose L in general as follows: L = {/SWAP X

VSWAP/, where

\/SWAP = exp[—i%(YB + Y24)} 3)

\/SWAP/ = eXp[—i%(YBZQZA; + Y24Z123)i|, (4)

and exp[—i%yi ;1 is just the square root of the swap gate
between physical qubits i and j. The gate /SWAP applies
this operation on qubits 1, 3 and 2, 4 in parallel. Depending
on whether the eigenvalues of Z,Z, and Z,Z; are +1 or —1
on the four basis states of Eq. (2), the gates /SWAP and
v/SWAP' multiply constructively (destructively) to generate
a full swap (identity). Equation (4) involves four-body spin
interactions. Figure 1 shows how to construct these from
available two-body interactions.

Overhead.—To assess the physical qubit and time re-
sources associated with our method, we consider the typi-
cal switching times of global magnetic fields and exchange
interactions. Using estimates from [7], a 7 rotation on an
electron spin requires a current pulse of duration 75 =
60 ns. For electron-spin qubits in quantum dots and in
donor atoms (Heisenberg models) [4], and also for quan-
tum dots in cavities (XY model) [14], in the adiabatic
switching mode of J;;(¢), the duration 7 of a swap gate
is 10-100 ps, while for exciton-coupled quantum dots (XY
model) 7z < 1 ps. For simplicity we now assume uniform
values 73 = 10 ns and 7z = 100 ps. Thus, global mag-
netic field switching dominates the time overhead. We
compute the time to implement the LCU, 7 ¢y, using the
circuits in Fig. 1. The number of exchange pulses for an
LCU in the XY model is 14, and no global magnetic field is
needed, yielding 7y cy = 1.4 ns. The time 75 for a
single-encoded controlled-NOT (CNOT) gate, which can be
implemented using 15 exchange pulses and 6 global mag-
netic field pulses, is Teggr = 60 ns > 7y y. For the XXZ
and Heisenberg models an LCU requires 20 global mag-
netic field pulses and 31 exchange pulses, compared to
8 global and 14 exchange pulses for a CNOT. In this case
Ty = 2.57aor- These 10-100 ns time scales should be
compared, e.g., to recent estimates of dephasing times
T, ~ 50 us for electron spins in GaAs quantum dots [16].

Fault-tolerant computation on the S-2QUC.—So far we
have assumed perfect gates. We now relax this assumption.
Fault-tolerant computation is defined as a procedure in
which if any component of a circuit fails, the number of
errors that appears in each encoded block does not exceed
the maximum number of errors that the code is designed to
handle [1-3]. Transversal quantum operations, such as the
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normalizer elements CNOT, phase, and Hadamard, are those
which can be implemented in pairwise fashion over physi-
cal qubits. This ensures that an error from an encoded
block of qubits cannot spread into more than one physical
qubit in another encoded block of qubit [1-3]. Transversal
operations become automatically fault tolerant. In order to
construct a universal fault tolerant set of gates we should in
addition be able to implement, e.g., a fault-tolerant en-
coded 77/8 gate; although this gate is not transversal it can
be realized by performing fault-tolerant measurements [1].
By inspection of Ref. [1], pp. 482—493, it is easy to see
that all transversal operations and all operations needed to
construct the 7/8 gate, in particular, fault-tolerant mea-
surements and cat-state preparation, can be done in the
2QUC basis using the EU-QC methods of Ref. [11], with-
out any modification, as long as one can measure directly
in the 2QUC basis (as discussed above). Hence, with
respect to logical errors on the 2QUC qubits, the hybrid
S-nQUC preserves all the required fault-tolerance
properties.

This leaves the physical-level phase and bit flip errors
during encoded logic gates. We already showed that phase-
flip errors act as logical errors that the stabilizer-QEC can
correct. Bit flip errors are more problematic: a single
leakage error invalidates the stabilizer code block in which
it occurs, since the QEC procedures are ineffective in the
leakage subspace. Hence if such errors were to propagate
during a logic operation such as encoded CNOT, they
would—if left uncorrected—overwhelm the stabilizer
level and result in catastrophic failure. The solution is to
invoke the LCU after each logic operation, and before the
QEC circuitry. The LCU turns a leakage error into a logical
error, after which multilevel concatenated QEC [1-3] can
correct these errors to arbitrary accuracy. However, uncon-
trolled leakage error propagation during QEC syndrome
measurements must be avoided by applying LCU’s to each
2QUC qubit after the cat-state preparation and before the
verification step.

The final possibility we must contend with is leakage
errors taking place during the operation of the LCU itself.
Such a faulty LCU could incorrectly change the state of the
ancilla qubit in Eq. (2). Therefore finding the ancilla in
either |00) or |11) is an inconclusive result. Let p(s) be the
probability of a success event in one trail LCU operation
(this depends on accurate gating of the interaction
Hamiltonian, etc.). Let p(w) = Tr(p¢|0,.)0.]) be the
probability of finding the ancilla qubit in the final state
|0,), where p; represents the final entangled state of data
qubit and ancilla [p(w) critically depends on the error
model]. The probability, p(c), of achieving conclusive
and correct information about the state of the data
qubit (being in the logical subspace) is p(c) =
p(w and s)/p(w). This is the conditional probability of
LCU success when we already know that the ancilla is in

state [0;). Then 1 — p(c) is the probability of achieving a
conclusive but wrong result. We can arbitrarily boost the
success probability of the LCU + measurement, 1 —[1 —
p(c)]?, to be higher than some constant ¢y, by repeating
this procedure until we obtain n = log; _ (1 — ¢¢) con-
secutive no-leakage events.

Outlook.—By constructing error correction operations
from a Hamiltonian formulation, as done here, rather than
from gates as the elementary building blocks, an accurate
calculation of the fault-tolerance threshold is possible.
Previous threshold results cannot be directly used in the
case of EU quantum computing, since leakage errors were
considered to be negligible. However, in the EU case these
errors are dominant and the extra resources needed for the
implementation of the LCU’s should be accounted for in a
new threshold calculation.
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