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Unconditional Security of a Three State Quantum Key Distribution Protocol
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Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on
the laws of quantum mechanics. Two prominent QKD schemes are the Bennett-Brassard 1984 and Bennett
1992 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new
family of three-state protocols that offers advantages over the previous schemes. Until now, an error rate
threshold for security of the symmetric trine spherical code QKD protocol has been shown only for the
trivial intercept-resend eavesdropping strategy. In this Letter, we prove the unconditional security of the
trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also
discuss how this proof applies to a version of the trine spherical code QKD protocol where the error rate is
evaluated from the number of inconclusive events.
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Quantum key distribution (QKD) protocols permit two
separated parties, say Alice and Bob, to construct a secret
shared string of bits that may be used for cryptography. The
first QKD protocol, called BB84, was invented by Bennett
and Brassard in 1984 [1]. It requires Alice to randomly
produce four different states j0i, j1i, j�i, j�i and send
them through a quantum channel to Bob who measures
them randomly in the fj0i; j1ig basis or in its conjugate
basis fj�i; j�ig. The unconditional security of this pro-
tocol was first shown by Mayers in 1996 [2]. A simpler
QKD protocol, B92, was proposed by Bennett in 1992
[3]. It requires Alice to produce only two nonorthogonal
states, say j 1i and j 2i, and Bob to perform the measure-
ment described by the POVM (positive operator-valued
measure) f�j � 1ih � 1j;�j � 2ih � 2j;1��j � 1ih � 1j��j � 2i�
h � 2jg, where j � 1i and j � 2i are orthogonal to j 1i and
j 2i, respectively, and � equals 1

1�jh 1j 2ij
to optimize the

probability of a conclusive result to occur. Recent results
by Tamaki et al. showed that B92 is secure for small noise,
and the security threshold depends on qubit losses [4].

Phoenix et al. [5] postulated that the addition of a third
state to the B92 protocol could considerably enhance its
security and would be optimal if the three quantum states
form an equilateral triangle on the X-Z plane in the Bloch
sphere. We call this particular case the trine spherical code
QKD protocol or the Phoenix-Barnett-Chefles 2000
(PBC00) protocol. PBC00 is similar to B92, except that
Alice randomly chooses two of three states for a basis
instead of using two fixed states. From Eve’s point of
view, the state sent by Alice is a maximally mixed state,
unlike in B92. This feature is similar to BB84, in which the
choice of encoding basis by Alice corresponds to a random
rotation (the identity or the Hadamard transformation). In
PBC00, the choice of encoding basis by Alice also corre-
sponds to a rotation—by 120	, 240	, or none at all.
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Intuitively, we could expect to find a security threshold
for PBC00 that is independent of qubit losses and that is
close to the one of BB84. As we will explain in detail, our
security proof also applies to a slightly modified version of
the PBC00 protocol proposed by Renes [6] that we refer to
as R04. In this protocol, the error rate is estimated from the
number of inconclusive events, and all conclusive results
can be used as data bits instead of wasting some as test bits.
This also simplifies the classical communication between
Alice and Bob because they do not need to randomly select
a set of test bits and broadcast them.

Up to now, the high error rate threshold for the security
of the PBC00 protocol has been shown only in the special
case of the intercept-resend attack [6]. In this Letter, we
give a proof of the unconditional security of the PBC00 and
R04 protocols. Assuming one-way classical communica-
tion, we show that these protocols are secure up to a bit
error rate of 9.81%. In order to establish security, we first
propose a QKD scheme based on an entanglement distil-
lation protocol (EDP) [7]. This protocol uses a Calderbank,
Shor, and Steane (CSS) code [8], a technique first used by
Shor and Preskill in their security proof for BB84 [9].
Before running an EDP-based on CSS codes, Alice and
Bob perform state rotations followed by Bob’s local filter-
ing (LF) operation [10]. The local filtering operation cor-
relates the phase and bit error rates, as in the security proof
of B92 [4]. Because of the state rotation by Alice and Bob,
we achieve phase error estimation from bit error estima-
tion. We also explain how the security of R04 follows from
that of PBC00.

The PBC00 protocol involves three states j 1i
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 j0xi, where
fj0xi; j1xig is a basis state (X basis) of a qubit state. The
Z basis is defined by fjjzi 
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(j � 0; 1), and we also define states j � 1i �
��
3

p

2 j0xi �
1
2 j1xi,

j � 2i �
��
3

p

2 j0xi �
1
2 j1xi, and j � 3i � j1xi that are orthogonal

to j 1i, j 2i, and j 3i, respectively. The protocol proceeds
as follows.

PBC00.—(1.1) Alice creates a large trit string r and
a large bit string b of the same length. For each ri, the
ith trit value of the trit string r, she chooses the set
fj 1i; j 2ig (if ri � 0), fj 2i; j 3ig (if ri � 1), and
fj 3i; j 1ig (if ri � 2). If the ith bit value bi is 0, she
prepares the first state of the chosen pair. If the bit is 1,
she prepares the second state. Alice sends all prepared
qubits to Bob.

(1.2) Bob performs a measurement described by the
POVM f23 j

� 1ih � 1j;
2
3 j
� 2ih � 2j;

2
3 j
� 3ih � 3jg. He publicly an-

nounces when all his measurements are done, and Alice in
turn announces the trit string r.

(1.3) Bob regards the ith measurement outcome j � 1i (if
ri � 0), j � 2i (if ri � 1), and j � 3i (if ri � 2) as the bit
value 0. Similarly, he regards j � 2i (if ri � 0), j � 3i (if ri �
1), and j � 1i (if ri � 2) as the bit value 1. All other events
are regarded as inconclusive. Bob announces whether his
measurement outcome is inconclusive or not. Alice and
Bob keep all data where Bob’s outcome is conclusive,
discarding the rest.

(1.4) Alice randomly chooses half of the remaining
events as test bits in order to estimate the bit error rate
on the code bits, and announces her selection to Bob. They
compare the values of their test bits, aborting the protocol
if the error rate is too high.

(1.5) By public discussion, they run classical error cor-
rection and privacy amplification protocols to share a
secure secret key.

In order to prove the security of PBC00, we relate this
protocol to a secure QKD based on an EDP initiated by
state rotations and a LF, followed by error correction using
CSS codes [9]. The LF is designed so that it probabilisti-
cally distills the maximally entangled state j��i � 1��

2
p �

j0zij0zi � j1zij1zi� if the filtering succeeds. Thus, the
successful local filtering operation can be written by a
Kraus operator F � j0xih0xj �

1��
3

p j1xih1xj. For later conve-

nience, we define j��i � 1��
2

p j0zij0zi � j1zij1zi�, j��i �
1��
2

p j0zij1zi � j1zij0zi�, and Ry2b�=3� as a 2b�=3 rotation

around the Y axis in the Bloch sphere. The following is the
secure QKD based on an entanglement distillation protocol
that is reduced to PBC00.

QKD based on EDP.—(2.1) Alice creates many pairs of
qubits in the state j�i � 1��

2
p j0ziAj 1iB � j1ziAj 2iB�, and

randomly chooses a large trit string r whose length equals
the number of prepared qubit pairs. She applies Ry2ri�=3�
on the second qubit of every pair and sends them to Bob.

(2.2) Upon receiving the ith signal state, Bob determines
whether the signal is in a qubit state or not, which physi-
cally corresponds to detecting a photon or not. If it is, he
declares this publicly to Alice, who in turn declares the trit
04050
value ri. Bob applies Ry�2ri�=3� on that qubit state
followed by the filtering operation. In cases where the
filtering operation does not succeed or Bob receives a state
that is not a qubit state, he publicly tells Alice to discard
her corresponding qubits.

(2.3) Alice randomly chooses half of the remaining
states as test bits and the other half as code bits, and
announces her selection to Bob. For the test bits, Alice
and Bob each measure their halves in the Z basis. By public
discussion, they determine the number of bit errors. If the
number of errors in the test bits is too high, they abort the
protocol.

(2.4) By public discussion, Alice and Bob agree on an
appropriate CSS code and run the EDP based on the CSS
code to distill nearly perfect Bell states from the remaining
qubit pairs (code pairs).

(2.5) Alice and Bob each measure the Bell pairs in the
Z basis to obtain a shared secret key.

First, we reduce this EDP-based protocol into the
PBC00 protocol. The reduction can be made in the manner
of Shor and Preskill [9]. Their reduction technique implies
that, in the context of QKD, the EDP-based on CSS codes
requires Alice to perform only Z-basis measurements im-
mediately after she has prepared the state j�i and Bob to
perform only Z-basis measurements immediately after he
has performed the filtering operation. The Z-basis mea-
surement, together with Alice’s rotation, is equivalent to
the situation where Alice randomly sends j 1i, j 2i, or
j 3i to Bob. On Bob’s side, the rotation followed by the
filtering operation and Z-basis measurement is described
by the following POVM:

Ry2ri�=3�Fyj0zih0zjFRy�2ri�=3�;

Ry2ri�=3�Fyj1zih1zjFRy�2ri�=3�;

Ry2ri�=3�1 � FyF�Ry�2ri�=3�;

(1)

which are equivalent as a set to the POVM f23 j
� 1i�

h � 1j;
2
3 j
� 2ih � 2j;

2
3 j
� 3ih � 3jg, regardless of the trit value ri.

Note that failing the filtering operation is equivalent to Bob
measuring j � ji when Alice encoded in the fj j�1i; j j�2ig
basis in the PBC00 protocol. This completes the reduction.

The equivalence of the two schemes allows us to use the
EDP-based protocol to prove the security of PBC00.
Security follows by employing a result of Shor and
Preskill. They showed that if the estimations of bit and
phase error rates on the code pairs are bounded, except for
a failure probability that becomes exponentially small asN
increases, then Eve’s mutual information on the secret key
also becomes exponentially small as N increases. Here, N
is the number of impure qubit code pairs. Since a large
number of test bits yields an exponentially reliable estima-
tion of the bit error rate on the code pairs, we have to show
only how to estimate the phase error rate from the bit error
rate on the code pairs in our protocol. In the case of BB84,
it is trivial to deduce that the phase error rate must equal the
3-2
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bit error rate since the protocol can be interpreted as Alice
and Bob measuring all the time in the bit basis, but half the
time the bit errors are inverted with the phase errors. In the
case of the three-state protocol, the phase error rate is five
quarters of the bit error rate. However, the lack of symme-
try caused by the filtering operation makes this more
difficult to prove.

To make the estimation of the phase error rate, we appeal
to Azuma’s inequality [11]. For a brief explanation of this
inequality, consider N random, but dependent, events. Let
fpl�gl�1;...;N be the set of probabilities of having a head in
coin flipping for each event. Note that pl� may depend on
the results of the l� 1 previous events. Azuma’s inequality
tells us that if we perform all theN coin flips and if we have
nhead head events, then the probability that the difference
between nhead=N and 1

N

PN
l�1 p

l� is larger than some arbi-
trary small quantity drops exponentially as N increases.

Proof of our claim.—Definition: Suppose we have a
series of events F0; F1; . . .. Let X0; X1; . . . be random var-
iables. The sequence is a martingale iff the expectation of
Xi�1 conditional to events Fi; Fi�1; . . . ; F0 is equal to Xi
for all i.

Consider the case ofN coin tosses, where the probability
of getting heads for each coin may be correlated in any
way. Consider a series of events F0; F1; . . . . Let hi be the
number of heads from the events Fi; Fi�1; . . . ; F0. Let Xi
be hi �

Pi
j�1 p

j� where pj� is the probability of obtaining
a head on the jth coin conditional on events
Fj�1; Fj�2; . . . ; F0. The expectation of Xi�1 conditional
on events Fi; Fi�1; . . . ; F0 is hi �

Pi
j�1 p

j� plus the expec-

tation of obtaining a head on the i� 1 coin, minus pi�1�.
Since the expectation of obtaining a head on the i� 1 coin
minus pi�1� is zero, the sequence X0; X1; . . . is a
martingale.

Special case of Azuma’s inequality: Let X0; X1; . . . be
a martingale sequence such that for each k,
jXk � Xk�1j � 1. Then, for all N � 0 and any � � 0,

P r�jXN � X0� � �j � 2e��
2=2N:

In the case of coin flipping introduced above, the condition
jXk � Xk�1j � 1 is obviously satisfied. If we let � � N�,
then Azuma’s inequality implies that

P r
���������
hN �

PN
j�1 p

j�

N

��������� �
�
� 2e�N�

2=2;

which proves our claim that the probability that the average
number of heads differs from

PN�1
j�1 p

j�=N by more than an
arbitrarily small quantity, �, drops exponentially as N
increases. �

For the phase error estimations, we define fpl�
bitgl�1;...;N

and fpl�
phasegl�1;...;N as the sets of probabilities that Alice and

Bob detect a bit error and a phase error, respectively, on the
lth qubit pair after they have done the same measurements
04050
on the l� 1 previous pairs. Let ebit and ephase be, respec-
tively, the bit and phase error rates that Alice and Bob
would have obtained if they had performed bit and phase
error measurements on the code pairs. Azuma’s inequality
tells us that if Cpl�

bit � pl�
phase is satisfied for all l and a

particular value of C, then we have the exponentially
reliable equality Cebit � ephase. Since ebit gets exponen-
tially closer to the bit error rate on the test bits, eerr, we
need to find only a value for C.

Before we try to obtain C, we must assume that Eve can
do any coherent attack on all the qubits sent by Alice and
that she can use all the ancillary qubits she wants. We write
a general equation for the state of the lth test pair depend-
ing on Eve’s action. We must be careful to take into
account that Alice and Bob’s measurement outcomes on
the previous l� 1 test pairs might affect the measurement
outcome for the lth test pair. Every qubit pair that has
passed the filtering operation has undergone Alice’s rota-
tion, Eve’s global operation, and Bob’s rotation followed
by the filtering operations. The reduced density operator of
the lth qubit can be written as �l� � 1

3

P
b�0;1;2j�

l�
b ih�

l�
b j,

where j�l�
b i � 1A � �FRy�2b�=3�Ê

l�Ry2b�=3��Bj�i,
j�i is the state created by Alice in step (2.1) before she
applies a rotation, and Êl� represents Eve’s action re-
stricted to the lth test pair. For simplicity, we suppose
that Eve’s action can be written in the form of a single
matrix Êl� that needs not be unitary. As it will soon be
obvious, our final result still holds in the most general case,
where Eve’s action on the lth pair is represented by a
superoperator satisfying

P
iÊ

l�y
i Êl�

i � 1. Note that Êl�

may depend on Eve or Alice and Bob’s measurement out-
come obtained from the previous l� 1 test pairs. Also note
that we summed over the different values of b, since r was
selected randomly and independently of the other opera-
tions done by Alice, Eve, or Bob.

The probability of measuring a bit error on the lth
test pair is pl�

bit �
1
 l�

h��j�l�j��i � h��j�l�j��i�

and the probability of measuring a phase error is
pl�
phase�

1
 l�

h��j�l�j��i�h��j�l�j��i�, where  l� �

h��j�l�j��i � h��j�l�j��i� � h��j�l�j��i �

h��j�l�j��i� is the probability that the filtering operation
succeeds on that qubit. Let us suppose that c11, c12, c12, and
c22 are the elements of Êl� in the X basis where the cij’s are

any complex numbers. Then, we easily obtain that 54p
l�
bit �

pl�
phase. Thus, we have C � 5

4 , and by the previous argu-
ment, we conclude that the phase error rate on the code
pairs, ephase, asymptotically approaches 54 ebit. This implies
that from the measured bit error rate on the test pairs (eerr),
Alice and Bob can not only get an estimate of the bit error
rate on the code pairs (ebit), but can also deduce the phase
error rate on them (ephase). If Eve’s action is represented by
a general superoperator, then the above result still holds by
3-3
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linearity. Note that this argument is valid for any eaves-
dropping allowed by quantum mechanics because we allow
fpl�
bitgl�1;...;N and fpl�

bitgl�1;...;N to be arbitrary, including any
correlations, and because the Êl�’s are also arbitrary. Thus,
our estimation is applicable to any attack, including coher-
ent attacks.

Since we have the bit and phase error rates, we can
calculate the secret key rate. The asymptotically achiev-
able key generation rate for bit error rate ebit and phase
error rate ephase is given by pconc�1� hebit� � hephase��,
where hx� � �xlog2x� 1� x�log21� x� is the binary
entropy [8], and pconc is the probability of conclusive
events. In our case, the key generation rate is given by
pconc�1� heerr� � h54 eerr��. From this we find that the
PBC00 protocol is secure up to eerr � 9:81%, for which
the key generation rate reaches 0. Contrary to the phase
error estimation of B92 over the lossy and noisy channel
[4], this threshold is independent of the qubit losses be-
cause, in the previous analysis, we considered only the
qubits that survived the filtering operation.

In order to compare the security performance of the
three-state protocol with the one of B92, BB84 and the
six-state protocol (which is similar the BB84 except that
Alice and Bob encode and measure in the X, the Z, and also
the Y bases), we assume that Eve simulates a depolarizing
channel where a qubit state � evolves as 1� p���
p
3

P
a�x;y;z#a�#a. Here, #a is the Pauli operator for a

component. It is known that B92, BB84, and the six-state
protocol are secure up to p � 3:4% [4], p � 16:5% [9],
and p � 19:1% [12], respectively, while the three-state
protocol is secure up to p � 15:2%.

The above security proof also applies to the R04 proto-
col [6]. It is similar to the PBC00 protocol, except that the
rate of inconclusive events is used to estimate the bit error
rate in conclusive events, instead of using test bits in
step (1.5). In the following, we explain how that is possible.
As a first step, we make a clear distinction between incon-
clusive results caused by qubit losses and those caused by
qubits that have failed the filtering operation. From now on,
inconclusive events exclude the qubits lost in the channel.
In PBC00, Alice randomly chooses which basis she uses
before sending the state. Without threatening the security,
we can modify the protocol so that she sends a random
state j ji and waits until Bob has received it before choos-
ing a basis. For each state, Alice can randomly pick be-
tween two bases. The one that she chooses determines
which result from Bob’s POVM is inconclusive and which
one induces a ‘‘good’’ conclusive result (by good, we mean
not an error). For Eve, there is no way to differentiate
between the one that is inconclusive and the one that
induces a good conclusive result. This implies that the
number of good conclusive results approximately equals
the number of inconclusive results. Define I as the fraction
of inconclusive results left after discarding the lost qubits.
Then, 1� ebit�1� I� is close to I, where ebit represent the
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error rate on all the conclusive events. More precisely, the
probability that ebit and 1�2I1�I are different by more than an
arbitrary quantity goes exponentially small as the number
of received qubits increases. Consequently, Alice and Bob
can measure the error rate of the conclusive results by
counting the number of inconclusive results. Note that
the fraction of conclusive results is pconc �

1
2�ebit

� 1
2 .

In this Letter, we have proven the unconditional security
of the PBC00 and R04 protocols, the latter offering the
ability to estimate the bit error rate without sacrificing test
bits. Using one-way classical communication, we found an
error rate threshold of 9.81%. As in the case of BB84, two-
way classical communication could increase the threshold
[13]. We believe that Azuma’s inequality, used in our
security proof, might be useful in other QKD protocol
security proofs. Finally, we note that the security proof in
this Letter could likely be modified to show the uncondi-
tional security of the tetrahedron spherical code recently
proposed by Renes [6] or of a new three-state QKD pro-
tocol robust against collective noise [14].
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