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Transition to Linear Domain Walls in Nanoconstrictions
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Domain walls in nanoconstrictions are investigated with a focus on thermal properties. In general, the
magnetization component perpendicular to the easy axis which in a domain wall usually occurs has a
value different from the easy-axis bulk magnetization value with a separate phase transition at a critical
temperature below the Curie temperature. Since this effect is the more pronounced the smaller the domain
wall width is, we investigate it especially in domain walls with a confined geometry, using analytical
arguments, mean-field theory, and Monte Carlo simulations. Our findings may contribute to the under-
standing of magnetoresistive effects in domain walls with sizes of only a few atomic layers, as, e.g., in
nanocontacts or nanoconstrictions.
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FIG. 1 (color online). Sketch of the wall geometry. The mag-
netization of the first and the last plane are antiparallel along the
easy axis. The magnetization rotates in a plane via the hard axis.
Well controlled domain walls could become important
constituents of future magnetoelectronic devices [1].
Especially, the understanding of domain walls in confined
nanometric geometries is important since those can show
behavior deviating from their usual bulk properties, as,
e.g., a controlled pinning and a strongly reduced domain
wall width [2–5]. The latter is thought to contribute to
large magnetoresistance effects of domain walls in nano-
wires [6], nanoconstrictions [7], and nanocontacts [8,9].

In only a few publications the temperature dependence
of domain wall properties was investigated [10–12]. Most
important in this context is the pioneering work of
Bulaevski�� and Ginzburg [13] who showed within the
framework of Ginzburg-Landau theory that for a one di-
mensional domain wall profile (e.g., a Bloch wall) the
easy-axis and hard-axis components of the magnetization,
respectively, are two separate order parameters with differ-
ent critical temperatures. In other words, the perpendicular
magnetization component which arises necessarily in a
domain wall has at finite temperatures values lower than
the easy-axis equilibrium magnetization (leading to the
term ‘‘elliptical domain walls’’) and vanishes completely
for a temperature Th which is lower than the Curie tem-
perature Tc of the bulk material (leading to the term ‘‘linear
domain walls’’ for temperatures Th < T < Tc).

However, the deviation of Th from Tc is proportional to
the squared inverse domain wall width [13] and, hence,
should be very small. Consequently, linear walls are hard to
detect experimentally [14]; their relevance is considered to
be rather low and most of the numerical calculations of
domain wall properties are performed using micromag-
netic codes where the assumption of a constant magneti-
zation value is made in contradiction to the findings
described above. In the following we investigate how far
thermodynamic deviations from pure Bloch-like domain
wall structures can become relevant due to the reduced size
of domain walls in confined geometries. This is an impor-
tant issue since it was suggested [15] that linear domain
walls might explain the observed large magnetoresistance
effects in constrained domain walls.
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In the following we consider a domain wall structure as
shown in Fig. 1. In the picture, each arrow represents the
mean magnetization of a plane. Our Monte Carlo (MC)
simulations are for a full three dimensional model allowing
for magnetization fluctuations within the planes while in
the mean-field (MF) approximation each (infinite) plane is
represented as one magnetization vector so that the model
is effectively one dimensional. Depending on the details of
the methods we apply, we use either fixed boundary con-
ditions where the first and the last plane of the system are
fixed as shown in the figure or we use antiperiodic bound-
ary conditions. In both cases we force a domain wall into
the system which for a large system size (number of planes
N) will not fill up the whole system. However, for a smaller
system size the boundary conditions force the domain wall
to adopt the system size. This models a domain wall caught
in a nanoconstriction [2] where perfect pinning is assumed.

We investigate the system in terms of a classical spin
model with spin variables jSij � 1 on a cubic lattice with
lattice constant a and energy contributions from ferromag-
netic exchange between nearest neighbors with coupling
constant J and a uniaxial anisotropy with D> 0 defining
the easy axis of the system,

H � �
J
2

X
hi;ji

Si � Sj �D
X
i

�Sei �
2: (1)

In the zero-temperature limit all spins within a plane will
be parallel and the domain wall profiles can be calculated
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analytically in the continuum limit where the energy den-
sity (per cross-sectional area) is a one dimensional integral

e �
J
2a

Z L=2

�L=2
�r � S�2dx�

D

a3
Z L=2

�L=2
�Se�2dx:

The magnetization of the domain wall rotates within a
plane and can be expressed by a single angle of rotation
�. The Euler-Lagrange equation which minimizes the en-
ergy above is solved by an elliptic integral

x �
Z �

��=2

�0d�����������������������
c2 � sin2�

p �
�0

c
F
�
�;

1

c2

�
;

where �0 � a
������������
J=2D

p
is the zero-temperature domain wall

width of an unconstrained wall and the integration constant
c is given by the boundary condition x��=2� � L=2 with
L � �N � 1�a. The wall profiles are then given by
Jacobian sine and cosine functions

Se�x� � sn
�
cx
�0

;
1

c2

�
; Sh�x� � cn

�
cx
�0

;
1

c2

�
: (2)

The limit c ! 1 corresponds to an unconstrained wall with
the usual Bloch-wall profiles

Se�x� � tanh�x=�0�; Sh�x� � cosh�1�x=�0�: (3)

The opposite case, c � 1, corresponds to a very con-
strained wall (L 
 �0) where the wall is forced to adapt
the system size and the profiles follow simple trigonomet-
ric functions,

Se�x� � sin��x=L�; Sh�x� � cos��x=L�: (4)

In this limit the actual domain wall width is L.
As an example, Fig. 2 shows a comparison of these

expressions with numerical MF results, obtained as de-
scribed below in the low temperature limit kBT � 0:02J.
The smaller system shows the case of a very constrained
wall where the wall profiles are already described by
trigonometric functions while the larger system shows an
intermediate case. Note that in Ref. [2] corresponding
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FIG. 2 (color online). Ground state easy- and hard-axis mag-
netization profiles for constrained walls. Data points are from
low temperature MF calculations; solid lines correspond to
Eq. (2). D=J � 0:003.
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calculations were made, but for other boundary conditions
and system geometries, respectively.

However, we want to focus on thermal properties and in
order to obtain results for finite temperatures we start with
the MF Hamilton operator which (neglecting terms without
S) is

H MF��
X
i

�JSi � �mi�1�4mi�mi�1��D�Sei �
2�; (5)

where the contribution 4Si �mi comes from the four neigh-
bors within the plane. Then we solve the MF self-
consistency equations,

m i � hSii �
1

Z
TrSie�HMF=kBT

with Z � Tre�HMF=kBT numerically. Here, mi is the ther-
mally averaged magnetization of the ith plane and the trace
is an integral over the unit sphere. These equations can be
solved iteratively, starting with an arbitrary magnetization
profile and then let the equations evolve until a stationary
state is reached.

Let us start with the case of an unconstrained wall.
Figure 3 shows domain wall profiles for two different
temperatures where the system size L � 40a is large
enough so that an equilibrium domain wall for an anisot-
ropy value of D � 0:03J fits well into the system. The
solid lines are the analytical functions as calculated above,
here, simply the tanh and 1= cosh profiles. Interestingly, for
finite temperatures the mathematical form of the wall
profile is conserved; solely the amplitudes and the domain
wall widths vary with temperature. Hence, in the limit
L � �0 the thermodynamic wall profiles can be described
as in Eqs. (3) but with a temperature dependent domain
wall width ��T� and temperature dependent amplitudes
Mh�T� and Me�T�. Furthermore, Fig. 3 suggests that the
temperature dependence of the two amplitudes is not the
same.

Instead, these amplitudes, Mh and Me, define two dis-
tinct order parameters as shown in Fig. 4. Obviously, these
two order parameters vanish continuously at two different
temperatures where the upper one is the usual Curie tem-
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FIG. 3 (color online). Easy- and hard-axis magnetization pro-
files in MF approximation for two different temperatures. D=J �
0:03.
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FIG. 4 (color online). Temperature dependence of easy- and
hard-axis order parameters and (reduced) inverse domain wall
width from MF calculations. L � 50a, D=J � 0:3.
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FIG. 5 (color online). Anisotropy dependence of the two criti-
cal temperatures Tc and Th. Data points are from MF calcula-
tions as in Fig. 4, solid lines from Eq. (6).
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FIG. 6 (color online). Dependence of the critical temperature
Th from the size of the constrained domain wall. Comparison of
MC data, MF calculations, and Eq. (7) (solid line). The dashed
line is a guide to the eye.
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perature Tc and the lower one is a second critical tempera-
ture, Th, which describes the phase transition of the hard-
axis component of the magnetization vector. For tempera-
tures Th < T < Tc the domain wall is linear with an easy-
axis component of the magnetization only. For T < Th in
general one finds an elliptical wall profile which for lower
temperature goes over to the usual Bloch-wall profile. Also
shown in Fig. 4 is the reduced, inverse domain wall width
demonstrating that ��T� increases slightly with tempera-
ture for elliptical domain walls, shows a kink at Th, and
then diverges in the linear wall regime approaching Tc.

Both critical temperatures depend on the strength of the
anisotropy D as is shown in Fig. 5. Tc corresponds to the
usual bulk Curie temperature and its anisotropy depen-
dence expanded with respect to D=J is kBTc=J �

2� 4
15D=J�O�D=J�2. As Fig. 5 demonstrates, Th has

also a linear dependence on D=J in the range of anisotro-
pies which is shown in the figure, and our numerical results
suggest kBTh=J � 2� 0:53D=J. This means that the dif-
ference between both critical temperatures scales with the
squared inverse domain wall width

kB�Tc � Th�=J � 0:40a2=�2
0: (6)

These findings, the second phase transition, its depen-
dence on �0, and the diverging domain wall width are
qualitatively in agreement with the earlier calculation
within the framework of the Ginzburg-Landau theory
[13]—an expansion close to Tc—where it was also shown
that close to Tc the (linear) wall has a tanh profile.
However, for experimental systems reasonable anisotro-
pies are rather small, so that in general the two critical
temperatures should nearly coincide and Mh should be
close to the easy-axis magnetization Me. Nevertheless,
experimental investigations of linear domain walls exist.
In [14] the influence of the wall structure (either elliptical
or linear) on the domain wall mobility was investigated.
Here, the deviation of Th from Tc was 1%. However, since,
as Eq. (6) shows, these effects increase with decreasing
03720
domain wall width larger effects should occur in smaller
domain walls as found, e.g., in constrained geometries.

For a strongly constrained domain wall and in MF
approximation Th can be estimated analytically. For a
system with antiperiodic boundary conditions and small
anisotropy, so that L 
 �0, the wall profiles follow trigo-
nometric functions which means that the angle of rotation
from plane to plane changes in each plane by the same
amount �a=L. This leads to a decrease of the MF coming
from the two adjacent planes proportional to cos��a=L�.
Including this in the MF Hamiltonian [Eq. (5)] the critical
temperature for zero anisotropy can be calculated in the
usual way, now leading to

kBTh=J �
4

3
�

2

3
cos

�
�a
L

�
: (7)

Note that for a constrained domain wall with L 
 �0

much bigger effects may occur than before [Eq. (6)].
In Fig. 6 we compare the formula above with numerical

calculations for the case of constrained walls. We use D �
0, so that the condition L 
 �0 is always fulfilled, and
simulate systems with fixed boundary conditions calculat-
ing Th from the hard-axis magnetization. Figure 6 demon-
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strates that pronounced effects can be found when the
domain wall is constrained to only a few atomic layers.
The agreement of our MF data with Eq. (7) is very good.
Nevertheless, the MF approximation strongly underesti-
mates this size dependent effect: this can be concluded
from the fact that even in the extreme case of a three layer
system—which is due to the fixed boundary condition
corresponding to a free monolayer—a finite Th is found
even though it is clear from the Mermin-Wagner theorem
that no order should occur.

Therefore, we additionally used MC methods to inves-
tigate the breakdown of ferromagnetic order in the original
spin model [Eq. (1)] more rigorously. Using MC methods
thermal excitations (thermally excited spin waves) are
fully taken into account. We use a heat-bath algorithm
and single-spin-flip dynamics for the simulations. At every
MC step each spin is subject to a trial step consisting of a
small deviation from the original direction [16]. The lateral
dimension of the system is up to 128� 128 with periodic
boundary conditions. The number of planes is varied from
3 to 21 where we use fixed boundary conditions for the first
and last planes. We start the simulations with an abrupt
domain wall and let it relax for 10 000 MCS (MC steps per
spin). Then we calculate the absolute value of the magne-
tization component perpendicular to the easy axis, aver-
aged over the whole system and for another 100 000 MCS
as order parameter of the phase transition. Note that the
precise definition of the order parameter is important:
without calculating the absolute value of the perpendicular
magnetization the long time average of one magnetization
component will always be zero since the wall magnetiza-
tion might rotate in the hard plane. Furthermore, to average
over the whole system is also important since the wall can
move diffusively.

Th is then determined from a finite-size scaling analysis
of the order parameter above where the lateral system size
is varied from 8� 8 to 128� 128. The resulting data
points are also shown in Fig. 6. The scaling analysis works
well with the exponents � and � from the three dimen-
sional Heisenberg model. Only for a very small number of
planes deviations occur indicating a crossover from three
to two dimensional behavior [17]. As expected Th now
goes to zero in the limiting case of a trilayer system so that
the change of the critical temperature is more dramatic. For
example, for a wall consisting of five atomic planes (L �
4a) Th is reduced by about 35% as compared to the Curie
temperature and even for a temperature of 0:5Tc the hard-
axis magnetization (the degree of order within the wall) is
reduced by about 20% as compared to the easy-axis bulk
value.

To summarize, investigating the influence of thermal
activation on the properties of domain walls in nanocon-
strictions we have demonstrated that with increasing tem-
perature Bloch-wall profiles change via elliptical walls to
linear domain walls. The temperature range where these
03720
effects occur scales with the squared inverse domain wall
width so that in general it is rather small. However, since in
confined geometries the relevant quantity is the size of the
constriction larger effects can be found. The breakdown of
ferromagnetic order is due to the fact that in a domain wall
the mean exchange field decreases due to the finite angle of
rotation between neighboring magnetic moments. Hence,
it is a general effect which will also occur in other types of
domain walls as, e.g., vortex walls. Our findings may have
an impact on the understanding of domain wall magneto-
resistance properties [15,18–20], especially its tempera-
ture dependence, for two reasons: first, in an elliptical or
linear domain wall the degree of spin disorder is larger in
the wall than in the bulk of the domain since the value of
the order parameter is lower. Second, as suggested in [15],
in a linear domain wall the change of the magnetization
direction is abrupt while only its value is changing. This
means that the spin of a conductance electron passing a
linear wall cannot follow a continuously rotating magneti-
zation direction.
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[14] J. Kötzler, D. A. Garanin, M. Hartl, and L. Jahn, Phys.

Rev. Lett. 71, 177 (1993).
[15] M. Dzero, L. P. Gor’kov, A. K. Zvezdin, and K. A.

Zvezdin, Phys. Rev. B 67, 100402 (2003).
[16] U. Nowak, in Annual Reviews of Computational Physics

IX, edited by D. Stauffer (World Scientific, Singapore,
2001), p. 105.

[17] D. A. Garanin, J. Phys. A 29, 2349 (1996).
[18] P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997).
[19] B. Y. Yavorsky et al., Phys. Rev. B 66, 174422 (2002).
[20] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B

66, 184403 (2003).


