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Spin-Wave Theory for the Dynamics Induced by Direct Currents in Magnetic Multilayers
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A spin-wave theory is presented for the magnetization dynamics in a ferromagnetic film that is
traversed by spin-polarized carriers at high direct-current densities. It is shown that nonlinear effects due
to four-magnon interactions arising from dipolar and surface anisotropy energies limit the growth of the
driven spin wave and produce shifts in the microwave frequency oscillations. The theory explains
quantitatively recent experimental results in nanometric point contacts onto magnetic multilayers showing
downward frequency shifts (redshifts) with increasing current, if the external field is on the film plane, and
upward shifts (blueshifts), if the field is perpendicular to the film.
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An effect that has attracted increasing attention due to
its potential application in spintronic devices is the driving
of the magnetization in magnetic nanostructures by high-
density electric currents. Berger [1] and Slonczewski [2]
first proposed that a spin-polarized current injected into a
ferromagnetic thin film exerts a torque on the magnetiza-
tion that opposes the effect of relaxation. This spin-
transfer-induced (STI) torque can be expressed in terms of
an effective magnetic field which is proportional to the
current density and, as the magnetic structures shrink to
nanoscale dimensions, it is expected to dominate over the
classical Oersted-Ampère field created by charges in mo-
tion. Despite the controversies regarding the nature of this
torque, it is generally agreed that the STI torque represents
a novel mechanism for driving the magnetization [1–11].

In recent years, several authors [7,12–14] have claimed
the observation of this effect in magnetotransport measure-
ments made with point contacts onto magnetic multilayers.
By varying the current intensity at a fixed value of the
external magnetic field, they observed sudden changes in
the resistance that were attributed to the onset of spin-wave
growth at certain critical values of the current. The thresh-
old current depends on the direction and intensity of the
applied dc field. However, the evidence of the spin-wave
excitation in the magnetoresistance experiments is very
indirect and no information on the spatial nature of the
excited modes is actually provided.

Clear-cut signatures of the presence of high-frequency
spin waves have been reported by Tsoi et al. [15], Kiselev
et al. [16], and Rippard et al. [17]. In [15], the magnetic
multilayer is placed in a microwave cavity and subjected
simultaneously to a direct current from a point contact
and a microwave radiation field. The observed mixing of
the two frequencies demonstrates that high-frequency spin
waves are indeed driven by the current. On the other hand,
in [16,17] microwave frequency oscillations resulting from
the precession of the magnetization induced by spin-
polarized currents are observed directly through contacts
patterned into planar waveguides. In both cases there are
intriguing features not predicted by the simple models
proposed so far. In this Letter we present a spin-wave
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theory for this dynamical process which accounts for
most of the recent experimental observations, including
the blueshifts and redshifts.

We consider a ferromagnetic film traversed by a direct
current with spin-polarized electrons. As shown by Berger
[1] and Slonczewski [2], the interaction between the spins
of the conduction electrons and the spins in the magnetic
film results in a torque that can be represented by an ef-
fective field acting on the local magnetization given by [2]

~H STI � ��J=	Ms�ẑ � ~M; (1)

where � � " �h	=2dMse, J is the current density, " is the
spin-transfer efficiency, 	 � g�B= �h is the gyromagnetic
ratio, g is the spectroscopic factor, �B is the Bohr mag-
neton, e is the electron charge, d is the film thickness, and
Ms is the saturation magnetization. Notice that ẑ is the
direction of the spin polarization, which is determined by
the applied field that magnetizes the films. The essential
feature of the STI field is that it exerts a torque on the
magnetization that tends to deviate it away from equi-
librium, producing an effect opposite to that of the damp-
ing. As a result, when the current exceeds a critical value
Jc, the damping is overcome leading to a rapid growth of
spin-wave modes supported by the film. The saturation
process and other phenomena at higher currents are gov-
erned by nonlinear effects. One way to study the physics
of this process is to use the Landau-Lifshitz equation,
which is intrinsically nonlinear. However, this equation
has only been solved analytically in the linearized approxi-
mation [4] or numerically in its full form [17]. In this Letter
we employ the spin-wave formalism to describe the non-
linear dynamics of the system. First we write the magne-
tization as

~M � x̂mxei!t � ŷmyei!t � ẑMz; (2)

where ẑ is the equilibrium direction, ŷ is chosen perpen-
dicular to the film, and mx; my � Mz. We will consider the
cases where the external field is applied either parallel or
perpendicular to the film plane. The components of the
local magnetization at site j can be expanded in creation
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and annihilation operators of spin deviation [18], a�
j and

aj, as

mx �
g�BN

��������
S=2

p

V
�aj � a�

j ajaj=4NS� � H:c:; (3a)

my � �i
g�BN

��������
S=2

p

V
�aj � a�

j ajaj=4NS� � H:c:; (3b)

Mz � Ms �
g�BN

V
a�

j aj; (3c)

where N is the number of spins S in the volume V and H.c.
is the Hermitean conjugate. In order to obtain the various
contributions to the energy one needs to transform the spin
deviation operators into the creation and annihilation op-
erators c�k and ck for the spin-wave mode with wave vector
k. This is done by means of the equation

aj �
1����
N

p
X

k

eikrj�ukck � vkc��k�; (4)

where uk and vk are the well known coefficients of the
Holstein-Primakoff transformations [18] which diagonal-
ize the Hamiltonian of the system and satisfy the relation
u2

k � v2
k � 1. Equations (3c) and (4) can be used to express

the STI field given by (1) in terms of the spin-wave
operators. The expectation values of c�k and ck can be
treated as classical variables, denoted by c	k and ck, whose
time evolution is described by the Heisenberg equation. We
consider initially only the linear terms, which are deter-
mined from Zeeman, anisotropy, dipolar, interlayer ex-
change, intralayer exchange, and STI field contributions
to the energy, that lead to

dck

dt
� �i!kck � �%k � �J�ck; (5)

where !k is the frequency of the spin-wave mode with
wave vector k and %k is the corresponding relaxation rate
which is phenomenologically introduced in the equation.
Because of the influence of the dipolar interaction, the
expression for the spin-wave frequency depends on the
direction of the applied field and the direction of the
wave vector with respect to the film plane. If the wave
vector is perpendicular to the film plane, one has, for the
case of the field perpendicular to the film plane,

!k � 	�H0 � Han � HE � Dk2 � 4)M�; (6)

where H0 is the value of the external applied field, Han is
the anisotropy field, HE is the interlayer exchange, D is the
exchange stiffness, and M is the effective magnetization
that includes the effect of surface anisotropy. On the other
hand, if the field is on the film plane, the frequency is given
by

!k � 	
�H0 � Han � HE � Dk2��H0 � Han � HE

� Dk2 � 4)M��1=2: (7)
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Equations (6) and (7) are approximately valid for a
general direction of the wave vector as long as kd � 1
[19]. The solution of the linearized equation of motion (5)
is straightforward: namely,

ck�t� � ck�0�e�i!kte��%k��J�t: (8)

Since the transverse components of the magnetization (3a)
and (3b) are proportional to the amplitude of ck, this result
implies that when the current density exceeds the critical
value Jc � %k=�, the spin-wave mode with the lowest
relaxation rate grows exponentially. This is what produces
a change in the magnetic state and a corresponding step in
the magnetoresistance versus current characteristics ob-
served in experiments. Writing the relaxation rate as %k �
%0 � *G!k, where *G!k is the Gilbert contribution and
%0 is a residual value independent of the frequency, one
obtains for the critical current

Ic �
2AedMs

�h"	
�%0 � *G!k�; (9)

where A is the area of the current cross section, assumed
to be uniform and determined by the characteristics of
the point contact. Note that the second term in (9) varies
with magnetic field and is responsible for the field depen-
dence of the critical current observed in experiments
[7,12–17]. For films magnetized perpendicularly to the
plane, the frequency is given by (6) and the resulting
critical current by

Ic � Ic0 �bH0; (10a)

Ic0 �
b

*G

%0=	�*G�Han �HE �Dk2 � 4)M��; (10b)

b �
2AedMs*G

�h"
: (10c)

In the magnetoresistance experiments with point contacts,
the critical current is indicative of the onset of the spin-
wave growth, but no direct evidence is obtained about the
nature of the modes which are excited by the STI field. In
the model proposed by Slonczewski [4], these modes are
cylindrical waves propagating radially away from the cur-
rent beam established by the point contact. The model
yields an expression for the critical current identical to
(10a), with the same slope b as given by (10c), but with
a constant term which can be much larger than the value
given by (10b). The reason for this is that the radially
propagating modes have radiation losses which are much
larger than the intrinsic magnon relaxation.

The field dependence of the critical current has been
experimentally studied in detail by Rippard et al. [12] in
Co=Cu multilayers, and the data were compared with the
predictions of Ref. [4]. The measured critical currents
exhibit a linear dependence on the field with slope b
typically on the order of 0:5 mA=T and initial values Ic0
consistently in the range 2–4 mA. Using mean values for
the parameters given in [12], 4)M � 16:5 kG, film thick-
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ness d � 1:2 nm, D � 5 meVnm2, *G � 0:02, " � 0:2,
and contact diameter 35 nm, the value of b calculated with
Eq. (10c), which is identical to the prediction of Ref. [4], is
0:4 mA=T, in quite good agreement with the measured
value. However, the measured initial values of Ic are
systematically about 1 order of magnitude smaller than
the value predicted in [4]. We attribute this discrepancy to
the fact that the radiation loss of the radially propagating
mode with wavelength on the order of the contact diameter,
assumed in [4], overwhelms the intrinsic damping of the
mode. This is a strong evidence that the spin-wave mode
excited by the direct current is not the cylindrical wave
assumed in [4]. A further evidence of this has been recently
provided by the experimental results of [16,17] which
demonstrate unequivocally that the mode excited by the
spin-injection current has a frequency close to the ferro-
magnetic resonance (FMR) value; i.e., it has k � 0.

In order to study the phenomena occurring above the
onset of the spin-wave excitation, one needs to take into
account the nonlinear terms in the equation of motion. The
important contributions arise from three sources: the nega-
tive departure from linearity of the STI torque as the
magnetization deviates from the equilibrium direction,
the surface dipolar energy (demagnetizing effect), and
the surface anisotropy energy. The energy density for the
latter two can be expressed by the equation E � 2)M2

.,
where . is the coordinate perpendicular to the film. For an
initial analysis we consider the field perpendicular to the
film plane. In this case the precession of the magnetization
is circular, the coefficients of the transformation (4) are
uk � 1 and vk � 0, so that the equation of motion is
considerably simplified. Using the expansions in (3) and
the transformation (4) and considering that only the uni-
form mode k � 0 is present [17], one can show that

dck

dt
� �i!kck � �%k � �J�ck �

�J
SN

c	kckck

� iSkc	kckck: (11)

From (11) it is straightforward to obtain the equation of
motion for the number of magnons, nk � c	kck. Using the
normalized variables n0

k � nk=SN, t0k � 2%kt, r �
�J=%k � I=Ic, where r is the driving parameter, we obtain

dn0
k

dt0
� �r � 1�n0

k � rn02
k : (12)

This is the Bernoulli equation, which has analytical solu-
tion for an excitation r in the form of a step function
applied at t � 0,

n0
k�t� �

r � 1

r � v0e
��r�1�t

(13)

where v0 � r � �r � 1�=n0, n0 is the (normalized) initial
number of magnons, assumed to be the thermal value.
Equation (13) shows that with driving r > 1, or I > Ic,
the number of magnons increases rapidly and saturates at
times � %�1

k with a value
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ns � SN
r � 1

r
� SN

I � Ic

I
: (14)

Note that for strong driving, r � 1, the number of mag-
nons saturates at ns � NS. We can use Eqs. (3) and (4)
with uk � 1, vk � 0, and the fact that the modulus of ck is
the square root of ns to calculate the cone angle of the
magnetization precession. For I � 1:5Ic, the saturation
number is ns � NS=3, which corresponds to a cone angle
of 48:4 �. Since the spin-wave theory with the expansion
(3) is a perturbative approach, we expect this value to be
close, but not equal, to the one obtained with the numerical
solution of the Landau-Lifshitz equation [17].

The last term in Eq. (11) does not influence the number
of magnons because it is pure imaginary. On the other
hand, it does produce a frequency shift 0! � Sknk. For
I < Ic this shift is negligible because the magnon number
has the thermal value. However, if I > Ic, the magnon
number is large and the shift can be appreciable. If the
field is perpendicular to the film plane, the component of
the magnetization entering the dipolar and surface anisot-
ropy energy is Mz. Using (3c) and (4) it can be easily
shown that the coefficient of the magnon interaction be-
comes Sk � 	4)M=NS. This produces an upward shift in
frequency with increasing driving current (blueshift),
which is approximately linear in a small current range, as
observed in [17]. With (14) one can obtain the frequency
shift versus current. For the case the field is perpendicular
to the film, the slope of this curve is

d0!
dI

� 	
4)MIc

I2
: (15)

Using the values given in Ref. [17], 4)M � 8 kG, g �
1:78, Ic � 3:95 mA, Eq. (15) gives for I � 8 mA a shift of
1:2 GHz=mA. For fields applied in the plane of the film,
the energy density is given by E � 2)m2

y. In this case, with
(3b) one obtains a nonlinear coefficient which is negative,
so that the frequency decreases with increasing current
(redshift). It turns out that with the field in the plane, the
magnetization precession is elliptical, uk > 1, vk > 0, and
the equation of motion for ck becomes somewhat more
complicated,

dck

dt
� �i!kck � �%k � �J�ck

�
�J
SN


�u2
k � v2

k�c
	
kckck � ukvk�c

	
kc	kck � ckckck��

� iTk�*1c	kckck � *2c
	
kc	kck � *3c

	
kc	kc	k

� *4ckckck�; (16)

where Tk � �	)M=2NS and the other factors are (drop-
ping the subscripts for simplicity),

*1 � 4u4 � 12u3v � 16u2v2 � 12uv3 � 4v4;

*2 � �3u4 � 12u3v � 18u2v2 � 12uv3 � 3v4;

*3 � �4u3v � 8u2v2 � 4uv3;
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FIG. 1. Microwave frequency spectra at several values of the
spin-injection current. Inset: calculated variation of f with I
(symbols). The straight line represents the experimental data
with slope �0:23 GHz=mA [17].
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and

*4 � �u4 � 4u3v � 6u2v2 � 4uv3 � v4:

Note that Eq. (16) is not expected to coincide with (11)
when uk � 1, vk � 0, because the dipolar energy arises
from m2

y when the field is on the plane and from M2
z when it

is perpendicular to the plane. Note also that (16) cannot be
solved analytically to yield a simple expression for the
frequency shift as in the case of perpendicular magnetiza-
tion. This problem has been solved approximately in [20].
Numerical solutions for the spectra of the mx component of
the magnetization are shown in Fig. 1 for several values of
the driving current, using the parameters of the experi-
ments of Ref. [17], 4)M � 8 kG, !k � 2) � 7:9 GHz,
g � 1:78, Ic � 3:95 mA, uk � 1:14, and vk � 0:55. As
shown in the inset of Fig. 1, the agreement with the data
of Rippard et al. [17] is impressive, considering that there
is no adjustable parameter. Note that since in the parallel
configuration the precession of the magnetization is ellip-
tical, the spectra of the Mz component of the magnetization
exhibit peaks at the second harmonic, as observed experi-
mentally [17].

In summary, we have shown that a spin-wave theory
incorporating nonlinear effects due to magnon interactions
explains quantitatively recent experiments of microwave
oscillations produced by direct currents, applied with point
contacts onto magnetic multilayers, including blue and red
frequency shifts. It is expected that other nonlinear dy-
namic effects occur as the driving current increases and
03720
other spin-wave modes are excited. Among them we pre-
dict frequency jumps, if the new mode dominates over the
previous one, and, if more than one mode coexist, mode
oscillations, and several routes to chaotic behavior [21].
Whether the actual devices are able to support sufficient
current densities to exhibit higher-order bifurcations re-
mains an open question.
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