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Intergranular Giant Magnetoresistance in a Spontaneously Phase Separated Perovskite Oxide
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We present small-angle neutron scattering data proving that, on the insulating side of the metal-
insulator transition, the doped perovskite cobaltite La1�xSrxCoO3 phase separates into ferromagnetic
metallic clusters embedded in a nonferromagnetic matrix. This induces a hysteretic magnetoresistance,
with temperature and field dependence characteristic of intergranular giant magnetoresistance (GMR). We
argue that this system is a natural analog to the artificial structures fabricated by depositing nanoscale
ferromagnetic particles in a metallic or insulating matrix; i.e., this material displays a GMR effect without
the deliberate introduction of chemical interfaces.
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The colossal magnetoresistance (CMR) in perovskite
oxides [1,2], and the giant magnetoresistance (GMR) in
metallic heterostructures [3–5] have revolutionized our
understanding of correlated electron physics and spin
transport in heterogeneous solids. Although they seem-
ingly originate from very different physics (GMR is ob-
served in artificial heterostructures, CMR in bulk
materials), recent progress has led to the realization that
heterogeneity also plays a key role in understanding CMR
[6]. The essential concept is that these randomly doped
oxides exhibit spatial coexistence of ferromagnetic (F)
metallic regions and non-F insulating regions [6–9].
Doped cobaltites such as La1�xSrxCoO3 have been shown
to exhibit a particularly clear form of this inhomogeneity
by electron microscopy [10] and nuclear magnetic reso-
nance (NMR) [11–13]. The phase separation occurs in
addition to the well-known spin-state transitions arising
from the comparable sizes of the Hund rule exchange
energy and crystal field splitting [14]. Co NMR [11] re-
veals the coexistence of F metallic, low spin insulating, and
glassy non-F regions at all x, although the F phase domi-
nates for x > 0:18. The metal-insulator transition (MIT) at
x � 0:18 and the coincident F ordering are then interpreted
as percolation of isolated F regions [15,16].

We present here small-angle neutron scattering (SANS)
proving that in the insulating phase of La1�xSrxCoO3,
i.e., x < 0:18, nanoscale F clusters form in a non-F
matrix. Combining these data with single crystal magneto-
transport we find that the formation of F clusters leads to
the onset of a previously unobserved hysteretic GMR-
type effect with field and temperature dependen-
cies correlated with the cluster sizes and populations.
This behavior is reminiscent of artificially heterostructured
materials composed of F clusters deposited in a non-
magnetic metallic [17,18] or insulating [19–23] matrix.
We argue that the phase inhomogeneity in this perov-
skite leads to the natural formation of a granular
ferromagnet-semiconductor system, analogous to the arti-
ficial granular systems used to investigate GMR,
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but without the deliberate introduction of chemical
interfaces.

Absolute SANS measurements were done at a wave-
length of 5 
A, at 0:01< q< 0:30 
A�1, using 10 �m grain
size polycrystals fabricated by solid-state reaction [15]. We
focused on three representative compositions: x � 0:15 (in
the semiconducting ‘‘spin-glass phase’’), x � 0:18 (the
critical composition for cluster percolation), and x �
0:30 (in the F phase) [15,16]. In order to investigate intrin-
sic transport we also grew floating zone single crystals of
La1�xSrxCoO3 (0:00< x< 0:20), which were found
single phase by neutron and x-ray diffraction.

An example of the q dependence of the SANS is shown
in Fig. 1(a), for x � 0:3, i.e., well into the F metallic phase,
where the Curie temperature, TC, is 220 K. Strong mag-
netic scattering is observed, with the low q intensity in-
creasing rapidly below TC. This magnetic low q scattering
follows the well-known Porod form, I�q� � 6
��d�2=Rq4

(dotted line, Fig. 1), where R is the radius of the scatter-
ing centers and �d is the scattering length density con-
trast. This results from a 3D distribution of ‘‘hard spheres’’
in the regime q � R�1 and is often observed in Fs dueto
scattering from domains [24–26]. Observation of this form
down to q�0:01 
A directly implies that this x�0:3 sam-
ple exhibits long-range (length scales� 2
=0:01 
A�1�
600 
A) F order. At T > TC, I�q� consists of weak scattering
from the grains, which was minimized by employing large
grain size polycrystals (as opposed to previous work on
powder [27]). Near TC significant intensity is observed at
high q, following the Lorentzian form, I�q� � I0=�q2 �
�2�, with I0 and � constants. This has been observed in
many F materials [24,28] and is due to the quasielastic
critical scattering near TC. The quantity � � 1=�, where �,
the correlation length, diverges as T ! TC [24,28].

Examining Fig. 1 it is clear that the intensity can be
separated into low q scattering (due to long-range ordered
F domains) and higher q Lorentzian scattering (due to
short-range fluctuations). We therefore present the T de-
pendence of the two types simply by plotting the low q
1-1  2005 The American Physical Society
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FIG. 1 (color online). q dependence of the absolute SANS
intensity for (a) x � 0:30 at T � 12, 225, and 282 K, and
(b) x � 0:15 at T � 12, 100, and 206 K. The dashed line shows
the Porod form [I�q� 	 q�4] and the solid lines are fits to the
Lorentzian functional form.
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intensity [I�q � 0:01 
A�1�] (Fig. 2, top panel) and the high
q intensity [I�q � 0:06 
A�1�] (Fig. 2, middle panel), along
with the T dependence of the magnetization, M, from
conventional magnetometry (bottom panel). Starting at
x � 0:30, which we have already shown to be a long-range
ordered F (consistent with neutron diffraction [10,27]), we
find a sharp increase in the low q intensity at TC, in agree-
ment with M�T�. The corresponding high q data show a
narrow peak [full width at half maximum �FWHM� �
30 K] near TC, due to the expected critical scattering. For
x � 0:18, i.e., the critical composition separating long-
range F order and metallicity from glassy magnetism and
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semiconducting behavior, the situation is different. The
low q scattering is less intense and has a broad onset
near TC, whereas the high q scattering exhibits a wide
peak (FWHM � 80 K), reflecting the fact that long-range
order is barely stable. At x � 0:15 the low q intensity is
weak, with no discernible transition to long-range F order.
Despite this, the magnetization at low T is almost 25% of
that observed at x � 0:30, i.e., deep in the F phase. The
origin of this magnetization is clarified by the high q
intensity which shows a T dependence that closely mimics
M�T�, in stark contrast to x � 0:18 and 0.30. Given that this
high q scattering is due to short length-scale F correlations
it is clear the large magnetization at x � 0:15 results from
F clusters that have not yet coalesced.

The Lorentzian form allows for a simple extraction of
the magnetic correlation length, � (Fig. 3). At x � 0:30 the
spin correlations form above TC and � diverges as TC is
approached due to the onset of long-range order. For x �
0:18, however, the correlation length, although it increases
near ‘‘TC,’’ does not diverge. This composition is at the
boundary between short- and long-range ordering and does
not have a well-defined TC. For x � 0:15 the Lorentzian
form is still observed at high q [Fig. 1(b)], but no critical
divergence exists due to the absence of a transition to long-
range order. Instead, � increases below 150 K [Fig. 3(c)],
due to nucleation of isolated F clusters, which eventually
attain correlation lengths 	15–25 
A at low T. Although
we cannot clearly differentiate between purely electronic
phase separation and inhomogeneities due to local varia-
tions in composition, we note that there is no signature of
chemical clustering in the SANS.

The picture that emerges at x � 0:15 is of isolated F
clusters embedded in a non-F matrix. In order to correlate
the information provided by SANS about the population
and sizes of these clusters with the electronic properties,
we examined magnetotransport in single crystals near the
(c)
=0.15 

(f)

 

00 200 300

(i)

00 200 300

 

 

FIG. 2 (color online). T dependence of
the SANS intensity at low q (top panel),
high q (middle panel), and the field
cooled (10 Oe) M�T� (bottom panel).
Data are shown for x � 0:30 (left panel),
x � 0:18 (center panel), and x � 0:15
(right panel). The inset to (c) is simply
the data of (c) on an expanded scale.
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FIG. 4 (color online). T dependence of the resistivity for six
single crystals (0:00< x< 0:20). Inset: T dependence of the
resistivity at x � 0:10 and 0.15 plotted as � (log10 scale) vs
T�1=2. The solid lines are straight line fits resulting in T0 � 2218
and 36 K, respectively.
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FIG. 5 (color online). 10 K magnetoresistance of an x � 0:15
single crystal measured with H parallel to [111] and perpen-
dicular to the sample plane (and current), after zero field cooling.
Open symbols correspond to the MR (left axis), while the solid
line corresponds to M�H� (right axis). Inset: doping dependence
of the MR. Solid points represent hysteretic MR and the open
symbols indicate no hysteresis.
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FIG. 3 (color online). T dependence of the magnetic correla-
tion length, �, for (a) x � 0:30, (b) x � 0:18, and (c) x � 0:15.
The thick solid line in (c) shows the 90 kOe MR for x � 0:15
(right axis). The dashed lines are guides to the eye.
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MIT. The T dependence of the resistivity (�) for 0:00<
x< 0:20 is shown in Fig. 4. At x 
 0:17 we find positive
values of d�=dT at high T and a finite T � 0 conductivity,
indicating metallic behavior. Typical nonhysteretic nega-
tive MR (	20%) is observed in the vicinity of TC for the
metallic samples. The MR on the insulating side of the
MIT is of more interest and is shown in Fig. 5 for x � 0:15
at T � 10 K. Large negative MR is observed f���H� �
��0�
=��0� � �68%g, which persists to high field, is hys-
teretic, and exhibits distinct differences between the virgin
curve and subsequent field cycles (see the detail near
H � 0). ��H� displays peaks at H � �6:5 kOe, which
corresponds closely with the coercive field (HC) extracted
from M�H� (6.4 kOe). This effect occurs only at low T, as
shown in Fig. 3(c), which plots the T dependence of the
90 kOe MR. The MR becomes evident at the same tem-
perature as the first indications of cluster nucleation, mean-
ing that the hysteretic MR occurs only when F clusters
form in the semiconducting non-F matrix. This point is
further reinforced by the inset to Fig. 5, which shows the
composition dependence. The MR decreases rapidly at the
MIT, where the isolated F clusters cease to exist due to
their coalescence into a percolated network. Moreover, as
is also shown in this figure, the MR has distinctive hys-
teresis, with resistivity peaks at HC, for all of the insulating
compositions (x < 0:17), but this hysteresis disappears at
higher doping (solid points denote hysteretic MR while
03720
open points indicate no hysteresis). Note that this MR is
not due to spin-dependent tunneling between grains, as
seen in polycrystalline CMR materials [2,29], as our speci-
mens are single crystal.

These qualitative features exhibit remarkable similarity
to the negative intergranular MR previously observed in
artificial structures composed of nanoscale F particles in an
insulating or metallic nonmagnetic matrix. The insulating
matrix systems Co-SiO2 [22,23] and Ni-SiO2 [19–21]
have been studied since the 1970s while interest in metallic
matrix systems such as Co-Cu [17,18] and Fe-Cu [17] was
stimulated by the discovery of GMR in 1986 [3]. These
systems are fabricated by cosputtering and are composed
of 10–70 
A F clusters embedded in a non-F matrix
1-3
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[18,19,21–23]. The insulating matrix systems display siz-
able MR [22], with noticeable differences between the
virgin curve and subsequent cycles [22], as well as an
MR that decreases rapidly beyond percolation. The metal-
lic matrix systems have GMR up to �23% at 5 K in a
50 kOe field [18], a nonsaturating response to 50 kOe [17],
and strong hysteresis [17,18]. Quite simply, we suggest that
La1�xSrxCoO3 is a naturally occurring analog of these
artificial granular systems, as all of the features observed
in the low T MR are consistent with those seen in the
artificial granular materials. In our case the system sponta-
neously phase separates into metallic F clusters of diameter
	25 
A embedded in a semiconducting matrix of hole-poor
non-F material. The heterogeneity is therefore provided by
the spontaneous magnetoelectronic phase inhomogeneity
as opposed to artificial heterostructuring. The hysteretic
low T MR then arises due to spin-dependent transport
between F clusters. The resistivity is maximized at �HC
(where M � 0) and is reduced in applied fields due to
alignment of the cluster magnetizations [30]. Considering
the semiconducting nature of our matrix it is unsurprising
that the La1�xSrxCoO3 MR displays features consistent
with both the insulating and metallic matrix systems.
Note that in our case the matrix is itself magnetic (albeit
non-F) meaning that a high field response is expected due
to polarization of the matrix.

These qualitative statements can be strengthened by two
quantitative analyses. In the artificial matrix systems the
MR scales with M as ���H� � ��HC�
=��HC� / ��M�H�=
MS


2 [17,22], where MS is the saturation magnetization
[31]. The agreement with this scaling form (both on the
virgin curve and subsequent cycles) is shown in Fig. 5,
where the solid line depicts the square of the experimental
M=MS. (Note that a similar scaling applied to manganites
[1] was developed for the nonhysteretic CMR near TC and
models completely different physics.) It has also been
shown that in the insulating matrix systems ��T� follows
� � �0 exp�T0=T�1=2, with �0 and T0 constants [20,22].
This occurs due to tunneling or hopping between clusters
in the presence of a Coulomb energy penalty for charging
the clusters [20] (or possibly a more complex mechanism
[20]) and is quite distinct from Efros-Shklovskii variable
range hopping [32], despite the identical ��T�. Such a T
dependence is indeed observed in the insulating phase, as
shown in the inset to Fig. 4. At x � 0:10 the T�1=2 form is
observed over 2 orders of magnitude in T with T0 �
2200 K, similar to the Co;Ni-SiO2 systems [19–23],
where T0 is in the range 182–4500 K. At x � 0:15, closer
to the MIT, the adherence to T�1=2 is less convincing,
although there may be an approach to this form at low T.

In summary, we have presented small-angle neutron
scattering and magnetotransport showing that the sponta-
neously phase separated perovskite oxide La1�xSrxCoO3 is
the first known natural analog to artificial structures com-
posed of ferromagnetic particles embedded in nonferro-
magnetic insulating or metallic matrices. This allows us to
03720
observe an intergranular GMR effect without the deliberate
introduction of chemical interfaces.
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