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Conduction Mechanism in a Molecular Hydrogen Contact
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We present first principles calculations for the conductance of a hydrogen molecule bridging a pair of Pt
electrodes. The transmission function has a wide plateau with T � 1 which extends across the Fermi level
and indicates the existence of a single, robust conductance channel with nearly perfect transmission.
Through a detailed Wannier function analysis we show that the H2 bonding state is not involved in the
transport and that the plateau forms due to strong hybridization between the H2 antibonding state and
states on the adjacent Pt atoms. The Wannier functions furthermore allow us to derive a resonant-level
model for the system with all parameters determined from the fully self-consistent Kohn-Sham
Hamiltonian.
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FIG. 1. Calculated transmission for the molecular hydrogen
contact shown in the inset. For comparison both the k-point
sampled transmission and the �-point transmission are shown.
The �-point transmission has more structure; however, the
qualitative features of the curves are essentially the same. The
wide plateau with T � 1 extending across the Fermi level
indicates a single, very robust conductance channel with nearly
perfect transmission.
The study of electron transport through single molecules
has evolved during the last decade as new experimental
techniques have made it possible to produce atomic-scale
contacts with a few or even a single molecule suspended
between macroscopic electrodes [1–4]. At the same time
theoretical efforts have been made to describe and under-
stand the experiments from first principles [5–7]. The
connection between experiment and theory, however, has
been complicated by the crucial but, in practice, uncontrol-
lable atomistic details of the contact region between the
molecule and the leads. While the majority of previously
investigated molecules have shown a conductance much
lower than the quantum unit, G0 � 2e2=h, Smit et al.
recently measured a conductance close to 1G0 for a hydro-
gen molecule bridging a pair of Pt electrodes [8]. The result
immediately raises the question: How can a hydrogen
molecule which has a closed shell configuration and a large
energy gap be conducting? Despite the simplicity of the
system, there are still considerable disagreements among
the reported calculations for the conductance of the hydro-
gen bridge. Quantitatively, values of 0:9G0 [8,9] and
�0:2� 0:5�G0 [10] have been published by different groups
using similar methods. Perhaps even more importantly, the
physical explanations for the obtained results are very
different. Indeed, both the bonding [9,10] as well as the
antibonding [8] state of the H2 molecule have been pro-
posed as the current-carrying state.

In this Letter we present conductance calculations based
on density functional theory (DFT) showing that a hydro-
gen molecule bridging a pair of Pt contacts can have a
conductance close to 1G0, and we explain the physical
mechanism behind this result. The transmission function
is found to have a characteristic plateau with T � 1 in an
energy window of 4 eV around the Fermi level, indicating
the existence of a single, very robust conductance channel
with nearly perfect transmission. By performing a Wannier
function (WF) analysis we can directly study the trans-
mission through the H2 bonding and antibonding states
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separately. The results clearly demonstrate that the bond-
ing state takes almost no part in the transport and that the
plateau is a result of a strong hybridization between the H2

antibonding state and a combination of d- and s-like orbi-
tals located on the neighboring Pt atoms. The analysis
furthermore allows us to determine characteristic model
parameters from first principles which in turn provides a
very simple description of the system.

To describe the molecular contact we use the supercell
shown in the inset of Fig. 1. It contains the H2 molecule
anchored between two 4-atom Pt pyramids which again are
attached to Pt(111) surfaces [11]. We calculate the con-
ductance of the relaxed structures assuming that the elec-
trons move phase coherently through the contact and are
influenced only by the self-consistent Kohn-Sham poten-
tial. In this case the conductance is given byG � G0T�"F�,
7-1  2005 The American Physical Society
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FIG. 2 (color online). Calculated transmission for the structure
shown in the inset of Fig. 1 when all coupling to the bonding,
respectively, the antibonding, H2 state has been cut. The full
transmission has been repeated for comparison. The narrow peak
around �7 eV is clearly due to the bonding state, while the peak
at �2 eV and the wide plateau around the Fermi level almost
exclusively involve the antibonding state.
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where T�"F� is the transmission function at the Fermi level
[15]. The transmission function is found using the Green
function method described in Refs. [16–18]. In this ap-
proach the system is divided into three regions: a left lead,
L, a right lead, R, and a central region, C. The leads are
assumed to be periodic such that all scattering takes place
in C. In our case C coincides with the supercell of the DFT
calculation and the leads are bulk Pt(fcc) described in a
supercell containing 3� 3 atoms in the transverse plane to
match the central region at the interfaces. The transmission
function is then given by the formula [19]

T�"� � Tr�Gr
C�"��L�"�G

a
C�"��R�"��; (1)

where Gr
C is the retarded Green function of the scattering

region

Gr
C�"� � ��"	 i�	�S� �L�"� � �R�"� �HC�

�1: (2)

HereHC and S are the Hamiltonian and overlap matrices of
the central region, �	 is a positive infinitesimal, and �� is
the self-energy from lead �. The coupling strength of lead
� is given by �� � i��� ��y

��.
We use partly occupied Wannier functions, f�n�g, (see

below) as basis functions in each of the three regions (� �
L;R;C). Because of the limited size of the supercell in the
plane perpendicular to the transport direction the conduc-
tance should be calculated as an integral over the Brillouin
zone in the corresponding plane. We thus form the Bloch
states  k?n��r� �

P
R?
eik?�R?�n��r�R?�, where R?

runs over supercells in the transverse plane. For each k?

we obtain a Hamiltonian matrix H�k?�n�;m� �

hk?n�jHjk?m�i, which in turn leads to a conductance
G�k?� through Eq. (1). The integrated conductance can
then be approximated by the finite sum

P
k?
w�k?�G�k?�,

where w�k?� are appropriate weight factors.
We focus on a single, fully relaxed contact characterized

by the bond lengths dH-H � 1:0 �A and dPt-H � 1:76 �A.
The vibrational modes of the hydrogen molecule in this
configuration are in fair agreement with new experimental
results [20]. In Fig. 1 we show the transmission function
calculated using eight irreducible k points to sample the
transverse Brillouin zone (BZ). The same curve calculated
within the widely used �-point approximation is shown for
comparison. The two curves have essentially the same
features; however, the �-point curve has more structure.
This is because the k-point sampling provides the correct
smearing of the electronic structure in the leads which
effectively washes out features related to single points in
the transverse plane of the lead BZ. An interesting feature
of the transmission function is the wide plateau with T � 1
extending across the Fermi level. We refer to this plateau as
the 1G0 plateau.

To gain insight into the formation of the 1G0 plateau we
perform a Wannier function analysis. The WFs are defined
as linear combinations of the Kohn-Sham eigenstates with
the expansion coefficients chosen to make the WFs or-
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thogonal and maximally localized. By including selected
unoccupied eigenstates in this construction we can obtain
good localization properties of the WFs also for metallic
systems [21,22]. We stress that the minimal WF basis set
retains the accuracy of the plane wave DFT calculation
since the WFs by construction span the eigenstates below a
certain energy which has been set to 4 eV above the Fermi
level in the present calculation. The transformation results
in the following set of WFs: For each Pt we obtain five
d orbitals centered at the atom and a single � orbital
located at an interstitial site. For each hydrogen we find
an s orbital, jii (i � 1; 2), which is slightly elongated
towards the contacting Pt atom. We proceed by transform-
ing the hydrogen s orbitals into bonding and antibonding
combinations jbi � �j1i 	 j2i�=

���
2

p
and jai � �j1i �

j2i�=
���
2

p
. jai and jbi are the only states with significant

weight on the molecule and provide two conductance
channels well separated in energy. The on-site energies
are hbjHjbi � �6:4 eV and hajHjai � 0:1 eV relative to
the Fermi level of the metal. By cutting all coupling matrix
elements involving the bonding, respectively, the antibond-
ing state, we can directly test their individual contributions
to the total conductance when interference is neglected.
The result is shown in Fig. 2. The narrow peak just below
�7 eV is completely gone when the bonding state is
removed but is not affected by the absence of the antibond-
ing state. The peak is thus clearly due to transmission
through the bonding channel which is in good agreement
with the calculated on-site energy of jbi. In the energy
regime ��6�–��4� eV both the bonding and antibonding
states contribute to the transmission. For energies above
�3 eV the removal of the bonding state has little effect on
the transmission which must therefore be ascribed to the
antibonding state. A small exception to this is the narrow
peak at �1 eV which is caused by hybridization of the
7-2
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bonding state with Pt dz2 orbitals on the contacting atoms.
Overall we can conclude that the peak at �2 eV and the
1G0 plateau which determines the conductance are due to
transmission through the antibonding state.

The fact that the bonding state takes almost no part in the
transmission around the Fermi level allows us to describe
the contact by a resonant-level model [23] with all parame-
ters determined from first principles. In the resonant-level
model we consider a single level, jai, of energy "a �
hajHjai coupled to infinite leads via the matrix elements
tk� � hk�jHjai, where fjk�ig is a basis of lead �. The
model has served as the starting point for many more
advanced studies such as shot noise, electron-electron,
and electron-phonon interactions in resonant tunneling
systems [24–26]. A particularly useful formulation of the
model can be obtained if we introduce the group orbital of
lead � by jg�i � c�P�Hjai, where P� is the orthogonal
projection onto lead � and c� is a normalization constant.
By supplementing the group orbital by orthonormal states
fj~k�ig we obtain a new basis with the key property
h~k�jHjai � 0 for all ~k. The level is thus coupled to the
lead via the group orbital only. Since the contact is sym-
metric hgLjHjai � hgRjHjai � V. The imaginary part of
the level self-energy, �a, is directly related to the density of
states (DOS) of the group orbitals calculated with V � 0:
�a � %jVj2�&0

L 	 &0
R� � ��L 	 �R�=4. The real part of

the self-energy is the Hilbert transform of �a. For a sym-
metric contact we have &0

L � &0
R � &0

g and the transmis-
sion in Eq. (1) takes the simple form

T�"� � 2%2jVj2&0
g�"�&a�"�: (3)

Since &a can be obtained from �a and "a this expression
FIG. 3 (color online). Contour plots of the orbitals determining
the transport properties of the hydrogen contact: the H2 anti-
bonding state, jai, and the corresponding left and right group
orbitals, jgLi; jgRi. The left (right) group orbital has been con-
structed by applying the DFT Hamiltonian to jai and then
projecting onto the Wannier functions of the left (right) part of
the contact.
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shows that the transmission is determined by the three
quantities &0

g, V, and "a.
By applying the DFT Hamiltonian to jai in the WF basis

we construct the group orbitals of the H2 antibonding state.
Contour plots of the orbitals are shown in Fig. 3. The group
orbital is mainly composed of the dz2 orbital of the apex Pt
atom and three � orbitals centered within the Pt pyramid.
We calculate &0

g for the uncoupled system by cutting all
coupling matrix elements to jai. The result is shown in the
upper panel of Fig. 4 together with &a and the transmission
function. The pronounced peak at �1 eV is due to the
dz2 orbitals on the apex Pt atoms.

If we neglect the narrow peak at �1 eV, &0
g can be

described by a semielliptical band on top of a flat back-
ground; see the lower panel of Fig. 4. The coupling and
level energy can be directly read off the Hamiltonian
matrix, and we find V � 1:9 eV and "a � 0:1 eV relative
to the Fermi level. It should be noticed that the coupling
which is relevant for the adsorption of the hydrogen mole-
cule to the contact is

���
2

p
V � 2:7 eV since the level is

coupled by V to both leads. From these parameters we
can determine the Green function for the level which in
turn yields &a and T. The result is summarized in the lower
panel of Fig. 4. Based on the good agreement with the first
principles results we conclude that the simple model in-
deed gives a realistic description of the system. It is then
clear that the peak at �2 eV represents the bonding com-
bination between jai and the Pt band and that the
1G0 plateau forms because (i) "a lies close to the Fermi
level and well inside the relevant Pt band as defined by the
group orbital and (ii) the width of the renormalized level
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FIG. 4 (color online). The upper panel shows the transmission
together with the projected DOS for the H2 antibonding state and
the corresponding left group orbital. The lower panel shows the
same quantities obtained from the single-level model when &0

g is
approximated by a semielliptical band, and we use the coupling,
V, and on-site energy, "a, from the first principles calculation.
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(�a) is comparable to the bandwidth, i.e., the limit of
strong chemisorption [23].

The crucial point in the proposed mechanism is the
strong hybridization of the H2 antibonding state with the
Pt bands around the Fermi level. This picture agrees well
with the conventional understanding of hydrogen dissocia-
tion on simple and transition metal surfaces which has been
established on the basis of DFT calculations [27,28]. The
bonding and antibonding states of a hydrogen molecule at a
simple metal surface are broadened and furthermore
shifted down due to the hybridization with the metal s
and p states. During the dissociation process the antibond-
ing resonance crosses the Fermi level and becomes gradu-
ally filled with the result that the hydrogen-hydrogen bond
is weakened. For the transition metal the same general
picture applies, but the hybridization with the d states
further affects the antibonding resonance. The fact that
the antibonding state in the calculations for the bridging
hydrogen molecule between Pt contacts is close to the
Fermi level is thus an indication that the hydrogen-
hydrogen bond is weakened by the coupling to the metal
in agreement with the resulting increase of the hydrogen-
hydrogen bond length. The values we find for the positions
of the bonding and antibonding molecular levels, "b �
�6:4 eV and "a � 0:1 eV, are in fact quite close to the
ones used by Hammer and Nørskov [27] ("b � �7 eV,
"a � 1 eV) to describe hydrogen in the dissociative tran-
sition state on metals. This is in clear contrast to the studies
by Cuevas et al. [9] and Garcı́a et al. [10] who consider the
hydrogen molecule in the bridging position to have almost
the same bond length as the free molecule and who report
very large bonding-antibonding splittings of 23–24 eV
which even exceed the DFT-PW91 [14] value of 10.4 eV
for a free molecule.

In summary, we have presented first principles conduc-
tance calculations showing that a hydrogen molecule sus-
pended between Pt contacts can have a conductance close
to 1G0. Through a detailed Wannier function analysis we
have identified the conduction mechanism as being due to a
strong hybridization between the H2 antibonding state and
certain Pt bands. A resonant-level model with all parame-
ters determined from the self-consistent DFT Hamiltonian
was shown to account for the important features of the first
principles transmission function.
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