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Charge Shuttle as a Nanomechanical Rectifier
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We consider the charge shuttle proposed by Gorelik ef al. driven by a time-dependent voltage bias. In
the case of asymmetric setup, the system behaves as a rectifier. For pure ac drive, the rectified current
shows a rather rich frequency dependent response characterized by frequency locking at fractional values
of the external frequency. Because of the nonlinear dynamics of the shuttle, rectification is present also for
very low frequencies. These effects could be useful to unveil the internal dynamics of nanomechanical

devices.
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The great burst in the study of nanoelectromechanical
(NEMS) devices is unveiling several new perspectives in
the realization of nanostructures where the charge transport
is assisted by the mechanical degrees of freedom of the
device itself. This is the case, for example, when nano-
mechanics [1] has been combined with single electron
tunneling. Important experiments in this area are the use
of a single electron transistor (SET) as a displacement
sensor [2] or quantum transport through suspended nano-
tubes [3], oscillating molecules [4—7], and islands [8]. On
the theoretical side, several works [9—-20] have highlighted
various aspects of the role of Coulomb blockade in NEMS.

An exciting prototype example of mechanical assisted
SET device has been proposed by Gorelik et al. [9] and
named the single electron shuttle. The authors of Ref. [9]
predicted that a SET with an oscillating central island can
shuttle electrons between the electrodes leading to low
noise transport [10,17,18]. Although the realization of the
charge shuttle is difficult experimentally, promising sys-
tems are C® molecules in break junctions [4,7], or silicon
structures [8,21].

One of the advantage of this self-oscillating structure is
the fact that one can generate very high frequency me-
chanical oscillation with static voltages. The fact that the
system has an intrinsic and stable oscillating mode as the
result of a static voltage suggests that the application of an
oscillating voltage may lead to new interesting effects,
related to the interplay between the external ac drive and
the internal frequency of the device. Moreover, as the
nonlinearities of the dynamics have an important role,
this interplay should emerge in a wide interval of the ratio
of the two frequencies. The aim of this Letter is to study a
shuttle driven by a time-dependent applied bias. The most
interesting situation is when the system is asymmetric. The
structure acts as a rectifier. This behavior resembles that of
ratchets [22] with a periodic forcing potential generated in
a self-consistent way. We study in some details the case in
which the external bias is ac and report a quite rich behav-
ior as a function of applied frequency. We find clear
indications of frequency locking. The resulting direct cur-
rent may have both signs, depending on the value of the
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frequency. The response to an ac field can give strong
indications on the motion of the central island, even
when the system is very far from the shuttling instability.
A sizeable rectification is present down to frequencies
much smaller than the mechanical resonating frequency.
In a very recent experiment, Scheible and Blick [21] al-
ready observed similar results to those presented in our
work.

The single electron shuttle, shown in Fig. 1, is a SET
where the central island can oscillate between the two
leads [9]. The central island is subject to an elastic recoil
force, a damping force due to the dissipative medium, and
an electric force due to the applied bias. The island is
connected to the left and right leads through tunnel junc-
tions with resistances Ry /g(x) = Ry z(0)e™*/* (A is the
tunneling length and x is the displacement from the equi-
librium position in absence of any external drive). The
capacitances C, and C couple the island to the gate and
to the two leads, respectively, and depend weakly on x in
first approximation. The system is biased symmetrically at
a voltage V(1) (Vg = =V, = V/2), the charging energy is
E-= eZ/ZCE, where e is the electron charge, Cy = Cg +
2C, and the gate charge Q, is C,V,. For simplicity, we
consider the case of low temperatures (T < E), charge
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FIG. 1 (color online). Left panel: Schematic of a charge
shuttle. Right panel: Energy diagram for the SET. The diagonal
lines indicate the thresholds for the vanishing of the four rates
I'r, Upg, Iy, and I'zg. The two dots indicate the state of the
system during shuttling at fixed voltage V.
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degeneracy (Q, = ¢/2), and voltages |V| < Ec/e. In this
regime the grain can accommodate only n = 0 or one
additional electron (see right panel of Fig. 1). We also
assume that typical driving frequencies w are small com-
pared to T/h << E/h. This (rather weak) condition on the
frequency (typically E./h ~ 10 THz) allows a simple de-
scription of the tunneling in terms of time-dependent rates
(see below). All the properties of the nanomechanical
rectifier we want to discuss are captured already at this
level. The description is quite accurate for silicon struc-
tures. The last approximation (iw < E.) may be rather
crude to describe oscillating molecules (as in Ref. [4]),
where the effects of the bias time dependence described for
static SET’s could become important [23,24].

In the simplest approximation the dynamics of the cen-
tral island is described by Newton’s law [9]:

eV(t)
—n
mL

¥(1) = —wix(t) — yi(r) + (1) ¢))

Here m is the mass of the grain, w, is the oscillator
eigenfrequency, y is a damping coefficient, and L is the
distance between the two leads. We refer to Ref. [9] for a
detailed discussion of the validity of this phenomenologi-
cal model. In the regime of incoherent transport the (sto-
chastic) evolution of the charge —en(r) is governed by the
following four rates [25]: 'y = |eV(t)/4EIT; (x)B(V)
and I'pp = |eV (1) /4E|Tr(x)®(—=V) for n = 0 — 1 tran-
sitions; T'pp = |eV(0)/4E T, (x)O(—=V) and Ty =
leV(t)/4E-|T g(x)®(V) for n =1 — 0 transitions. Here
FL, FR, TL, and TR stand for from/to and left/right,
indicating the direction for the electron tunneling associ-
ated to the corresponding rate, I'; /z(x) = [Ry/z(x)C] ™",
and O(r) is the Heaviside function. The current I is then
determined by counting the net number of electrons that
have passed through the shuttle in a given time 7. At low
temperatures the fluctuating force associated to the dissi-
pation term yx ( [ dK5f(1)8f(0)) < mykgT) is negligible
with respect to that due to the fluctuation in the occupation
number of electrons ( [ dK8f(1)8/(0)) = (eV/L)*T™").
In most of the Letter, we consider the case of an oscil-
lating voltage bias V() = V, sin(w?), where the interplay
of the two frequencies w and w,, is crucial. If the system is
perfectly symmetric, no direct current can be generated,
since this would break the left/right symmetry. We then
concentrate on the asymmetric case Ryz(0)/R;(0) # 1.
Charge pumping in SET devices has been already dis-
cussed in Refs. [23,24]. Note, however, all the effects
discussed in this Letter are of pure electromechanical
origin. None of them would exist in a SET without a
moving island. Indeed we consider a symmetric bias; in
this case a static SET does not lead to pumping. We
performed simulation of the stochastic process governed
by the four rates defined above and by Eq. (1). The re-
sults presented are obtained by simulating 10° events of
tunneling for each plotted point. After a transient time
the system reaches a stationary behavior. In Fig. 2 we

show the stationary direct current as a function of the
frequency of the external bias. The rich structure shown
in the figure is generic; we observed a qualitatively iden-
tical behavior in a wide range of parameters. Since our
system is nonlinear, the external driving will affect the
dynamics also for values of w very different from the
natural frequency w,. Note that in this model the non-
linearities are intrinsic to the shuttle mechanism. They are
not due to a nonlinear mechanical force, but they stem
from the time dependence of n(z). As it is evident from
Fig. 2 the rectification is present also in the adiabatic limit
w/w, < 1.In addition, we find a series of resonances due
to frequency locking [26] when w = w,q/ p, with ¢ and p
integers. In this case the motion of the shuttle and the
oscillating source become synchronized in such a way
that every ¢ periods of the oscillating field the shuttle
performs p oscillations. In Fig. 2 we also report the low
frequency current noise (lower inset). The net direct cur-
rent results from large cancellations between positive and
negative contributions. But the current noise is always
positive, thus it does not cancel. We find that the noise
remains very close to the value for a static SET (averaged
over a period), S = (2¢?/m)[ [ Tx(I2 +T%)/(T, + '),
shown with a dashed line in the lower inset of Fig. 2. At
resonance, more ordered transport is realized and current
becomes less noisy [17]. In the following, we solve the
problem analytically in some tractable limits, and we
describe the frequency locked state.

If the electric force is much smaller than the mechanical
one, € = eV, /(w2mAL) < 1, one can take into account
the force generated by the stochastic variable n(r) only on
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FIG. 2 (color online). Current as a function of the frequency
for e = 0.5, y/w, = 0.05, I'/w, = 1, and Rgz/R; = 10. The
result of the simulation of the stochastic dynamics (grey or green
points) is compared with the approximate /, (solid line). In the
small frequency region, enlarged in the upper inset, several
resonances at fractional values of w, appear. We also show
(horizontal dark grey or red line) the analytical result from
Eq. (4) in the adiabatic limit. The triangular dot indicates the nu-
merical solution of the adiabatic equations. Lower inset: Current
noise from the simulation (grey or green points) and analytic
result (dashed line) for the static SET.
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average by substituting into Eq. (1) its mean: {n(r)) = P(¢),
where P(7) is the probability to have occupation n = 1 in
the grain. The charge dynamics in the central island is then
described by a simple master equation [25]:

P(1) = =T ())P(r) + I'(1), (2)

with  T'y(r) = |eV(t)/4E-|(T [x(r)] + Trlx(r)]) and
I5() = 1eV(6)/4Ec|(TL[x()]O[V(1)] + Tr[x()]O[V(©)]).
The rates depend on the time # through the voltage V(¢) and
the position of the grain x(¢). The instantaneous (average)
current through the structure is

I,(0)/e =[1—PO)ICp (1) = PO)T'7(2), )

where the subscript in the current indicates that the fluctu-
ations of the force acting on the shuttle, due to the discrete
nature of the charge tunneling, are neglected. As shown in
Ref. [9] the shuttle instability, at constant bias, is controlled
by the ratio €/(y/w,); we can thus assume both € and
v/w, small, but their ratio arbitrary.

In the adiabatic limit (0w < w, and ew,/y <K 1) it is
possible to find an approximate solution of Egs. (1) and (2).
In this case the position of the grain is given by the local
stationary solution of Eq. (1), x/A = el'y(x, V)/T';(x, V).
Solving this equation in lowest order in €, one obtains

V(%eB [ TR, —Tg)

l,(o <K w,) =c¢€
( ) 32E2C (T +T.)?

“

The corresponding value is shown in Fig. 2. The (small)
difference with the full numerics is due to the additional
expansion in € leading to Eq. (4). By solving numerically
the equation for the local equilibrium position of the grain,
one obtains the result indicated by the triangular dot at
o = 0 in the inset of Fig. 2 [27]. If €w,/7y is much larger
than the critical value for shuttling, the behavior is com-
pletely different. The grain will oscillate at its natural
frequency w, with the amplitude slowly modulated by
V(#). The modulation will be small, since for small € the
effect of a change in the value of V affects the mechanical
motion only after several oscillations. In this case the
rectified current is strongly suppressed as compared to
the adiabatic limit.

We now discuss in more detail the dependence of the
current on the external frequency. The most prominent
structure, observed also in the experiments of Ref. [21],
is present in our simulations at w = w,,, and it corresponds
to the main mechanical resonance. The current changes
sign across the resonance. This behavior is due to the phase
relation between the driving voltage and the displacement
of the grain. We verified this conjecture by solving Eq. (2)
with x(r) = Asin(wt + ¢). By calculating the current as a
function of ¢ and by means of the usual resonant depen-
dence for ¢(w) = arctan[wy/(w2 — w?)], we could re-
produce qualitatively the behavior of Fig. 2.

From Fig. 2 it is clear that additional structures appear
also for w = w,/q (magnified in the upper inset), with
q = 2,3, ... (the numerical results indicate that, except for

the fundamental frequency, even g are favorite with respect
to odd ones). As we already anticipated, the motion of the
shuttle and the oscillating source become synchronized at
commensurate frequencies whose ratio is p/q. This ratio,
known also as the winding number, can be defined more
precisely as

w= }irgloﬂ(t)/wt, (5)

where 6(r) is the accumulated angle of rotation of the
representative point (%, ¥) [6(¢r)/27 gives the number of
oscillations performed by the shuttle during the time f].
When the system is frequency locked at a winding number
w, it is possible to define the phase shift ¢ (1) = 6(¢) —
wwt. After a transient time for perfect locking, ¢ should
not depend on ¢ (apart from a small fluctuation if the
motion is not perfectly harmonical). An additional impor-
tant quantity to analyze is thus the phase shift variance
(Ap)? = () — (¢)*. This is calculated by sampling 20
points per cycle over 10° cycles. For a given w the smaller
the value of A ¢, the better the system locks to that external
frequency. The numerical results for w and A¢ are shown
in Fig. 3.

In Fig. 3 we show the dependence of the winding num-
ber as a function of the external frequency (top panel)
together with the analysis of A¢ (lower panel) calculated
from the stochastic simulation, line (if), and from the
average approximation, line (i). The locking at rational
winding numbers is confirmed by the presence of plateaux
of decreasing width. As expected the most stable plateau is
at w = 1: the system locks very well at this frequency. We
find that this holds up to very high frequency in the average
approximation, where w = 1 seems the only possible
winding number. The stochastic simulation would indicate
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FIG. 3 (color). The top panel shows the calculated winding
number obtained by the stochastic simulation (green points) and
by the average approximation of Eq. (2) (black points). The
bottom panel shows A¢ obtained with different methods:
(i) average approximation (solid line), (if) stochastic simulation
with w from Eq. (5) (green points), (iii) stochastic simulation
with w set equal to 1 (red dashed line), or (iv) with w = 2 (blue
dashed line). Parameters are the same as in Fig. 2.
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instead that for w/w, = 1.3 the locking with w = 1, as
defined from Eq. (5), is no more established. We verified
that this upper limit to the w = 1 plateaux depends essen-
tially linearly on the asymmetry Rg/R;. Quite generally,
plateaux size increases by increasing the asymmetry.
However, by studying A¢ for w = 1 in the whole fre-
quency range, one actually obtains that a correlation is
always present (i.e., A¢ < 7/+/3 = 1.81) even when
Eq. (5) gives a value of w different from one. The stochas-
tic fluctuations thus unlock the shuttle globally, but not
locally. Looking at the presence of local locking at other
winding numbers, we find that, for instance, w = 2 is
clearly present for w > 1, and reversely w = 1 is pres-
ent around w = 1/2 [see dashed lines (iii) and (iv) in
lower panel of Fig. 3]. For global locking, only one phase
variance is minimal. It corresponds to the ‘“‘dominant™
winding number. The presence of correlations of other
winding numbers may indicate partial locking at these
winding numbers (as in the region 0.6 = w = 0.9 for
w =1 and 2) or the contribution of higher armonics of
x(#) (as in the region w > 1).

The dependence of the phase shift around each reso-
nance is also remarkable. It is very similar to the behavior
of a forced harmonic oscillator, but instead of evolving
from O to 7 it goes from ¢, to ¢, + 7, where ¢, depends
on the resonance. With the aim of understanding the be-
havior of the current close to the resonances, we also
considered the adiabatic limit and looked for harmonic
oscillations superimposed to the adiabatic solution given
before. This can be verified numerically by searching a
periodic solution of period 277/ w for P(r). We find that in
this case the direct current is nonvanishing and that it
depends strongly on ¢. Using the phase dependence given
by the full numerical calculation we could reproduce the
shapes of the resonances.

All the results obtained here can be tested experimen-
tally. Indeed a very recent paper by Scheible and Blick [21]
already reports on some of the properties related to the
main resonance, although no direct quantitative compari-
son can be made as the experiment was performed at
room temperature. We discuss instead the Coulomb block-
ade regime which is actually a widely experimentally
accessible range (E- = 80 K in the experiment). Never-
theless, a qualitative comparison seems to indicate that the
main features are present even when the Coulomb block-
ade is not completely established. It is worth mentioning
that for the parameters of Fig. 2 the I-V characteristics
presents a minimum at @ = w,/2 that can be made van-
ishing by tuning slightly the asymmetry (Rg/R; =~ 8). The
device could then be exploited as a sensitive frequency
detector.
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