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Anomalous Conductance of a Spin-1 Quantum Dot
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We interpret the recent observation of a zero-bias anomaly in spin-1 quantum dots in terms of an
underscreened Kondo effect. Although spin-1 quantum dots are expected to undergo a two-stage
quenching effect, in practice the log-normal distribution of Kondo temperatures leads to a broad
temperature region dominated by underscreened Kondo physics. General arguments, based on the
asymptotic decoupling between the partially screened moment and the leads, predict a singular tempera-
ture and voltage dependence of the conductance G and differential conductance g, resulting in dg=dT �
1=T and dG=dV � 1=V. Using a Schwinger boson approach, we show how these qualitative expectations
are borne out in a detailed many body calculation.
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Single-electron transistors offer the intriguing opportu-
nity to probe and explore classes of strongly correlated
electron behavior associated with the Kondo effect that are
difficult to access in bulk materials [1–5]. The possibility
of observing a breakdown in Landau Fermi liquid behavior
that accompanies the overscreened two-channel Kondo
effect in quantum dots has been a subject of particular
recent interest [6,7]. In this Letter, we propose that singular
deviations from Landau Fermi liquid behavior associated
with the underscreened Kondo effect, hitherto unobserved
in bulk materials, will develop in conventional quantum
dots with even numbers of electrons and a triplet ground
state [8–10]. These deviations from conventional Fermi
liquid behavior are predicted to lead to singular voltage,
field, and temperature dependences in the conductance.

The Kondo effect in quantum dots with odd numbers of
electrons, predicted more than 15 years ago, [2,3] is now
well established by experiment [4,5]. Subsequent observa-
tions have shown that zero-bias anomalies associated with
a Kondo effect can also occur in quantum dots with even
occupancies, where Hund’s coupling between the electrons
can lead to novel degeneracies, through the formation of
higher spin states, or the accidental degeneracy of singlet
and triplet states. Zero-bias anomalies in integer spin
quantum dots were first reported by Schmid et al. [8].
Sasaki et al. [9] later discovered a zero-bias anomaly in
even electron quantum dots, associated with the degener-
acy point between singlet and triplet states, tuned by a
small magnetic field. Most recently, Kogan et al. [10] have
shown that the singlet-triplet excitation energy in lateral
quantum dots can be tuned by the gate voltage, explicitly
demonstrating that the zero-bias anomaly develops once
the triplet state drops below the singlet configuration.

Pustilnik and Glazman [11] have analyzed the low-
temperature Fermi liquid physics of higher spin quantum
dots. Their analysis shows that a lateral quantum dot in a
triplet configuration develops two screening channels
which fully screen the local moment at the lowest tem-
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peratures. Using the Landauer formula, they deduce that
the conductance G of the Fermi liquid which develops is
given by

G �
2e2

h
sin2�	1 � 	2� (1)

where 	1 and 	2 are the scattering phase shifts of the two
screening channels. According to this line of reasoning, the
development of a unitary phase shift in each channel, 	1 �
	2 � 
=2 leads to a complete suppression of the zero-bias
anomaly in a triplet quantum dot [12]. One of the questions
this raises, is why zero-bias anomalies, with near unitary
conductance have been seen in triplet quantum dots?

In this Letter we propose an interpretation of this un-
expected behavior in terms of an underscreened Kondo
effect. Our key observation is that the antiferromagnetic
Kondo coupling constants J� (� � 1; 2) associated with
the two screening channels in a triplet quantum dot will
generally be distributed independently. Since the Kondo
temperature depends exponentially on the coupling con-
stant TK� � D

���������
J��

p
e�1=J��, a normal distribution of the

coupling constants will drive a log-normal distribution in
the two Kondo temperatures [13], with the potential to
generate exponentially large separations in the relative
magnitude of the Kondo temperatures of each channel. If
we assume that ln�TK1=TK2� �

1
J2�

� 1
J1�

� 1, then over
the exponentially broad temperature range given by
log�TK1� � logT � log�TK2�, the underlying physics is
that of a one channel spin-1 Kondo model, in which the
spin is partially screened to a spin 1=2.

From this perspective, triplet dots with a large zero-bias
anomaly are those where the Kondo coupling constants of
the two channels are severely mismatched, giving rise to
decades of behavior dominated by the underscreened
Kondo effect in a single channel. Previous work, both
analytic [11] and numerical [12,14] has focused on the
equilibrium behavior of triplet quantum dots with Kondo
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temperatures of comparable magnitude. We now examine
the singular consequences of a wide separation between
these two scales in both finite temperature and finite volt-
age properties.

In the underscreened spin-1 Kondo effect, the residual
spin-1=2 moment is ferromagnetically coupled to leads,
with a coupling that scales logarithmically slowly to zero
[15]. The ground state which develops is a ‘‘singular Fermi
liquid’’, in which the electrons do behave as Landau qua-
siparticles which are elastically scattered with unitary
phase shift, but where, on the other hand, a logarithmically
decaying coupling generates a singular energy dependence
in the scattering phase shift and a divergence in the result-
ing quasiparticle density of states [16–18].

The Hamiltonian that governs this temperature range is

H � H0 � J y
� ~��� � 
 ~S;H0 �

X
k;��R;L;�

�kc
y
k��ck��

(2)

where  � �
P
k�ckL� � �ckR� denotes the linear combi-

nation of right and left channels that couples to the domi-
nant screening channel. Much is known about the
equilibrium physics of this model. At low temperatures,
the spin is partially screened from spin S to spin S� �1=2�.
The residual moment is ferromagnetically coupled to the
conduction sea, with a residual coupling that slowly flows
to weak coupling according to

J��
� � �
1

ln�TK
 �
�O

 
1

ln2�TK
 �

!
(3)

where 
�max�T;�BB� is the characteristic cutoff energy
scale, provided in equilibrium, by the temperature or mag-
netic field. At low energies and temperatures, the partially
screened magnetic moment scatters electrons elastically,
with a unitary phase shift, however the coupling to the
residual spin �S� 1

2� gives rise to a singular energy depen-
dence of the scattering phase shift. The low energy scat-
tering phase shift can be directly deduced from the Bethe
ansatz, and has the asymptotic form

	�!� �


2
� 
�J�!� �



2

�
1�

�S� 1
2�

ln�TK=!�

�
: (4)

The logarithmic term on the right-hand side is produced
by the residual coupling between the electrons and the
partially screened moment. While the electrons at the
Fermi energy scatter elastically off the local moment
with unitary scattering phase shift, as in a Fermi liquid,
the logarithmically singular dependence of the phase shift
leads to a divergent density of states,N�!� � 1



d	�!�
d! � 1

j!j ,
which means that we cannot associate this state with a bona
fide Landau Fermi liquid. For this reason, the ground state
of the underscreened Kondo model has recently been
called a singular Fermi liquid [17].
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These singular features of the underscreened Kondo
effect are expected to manifest themselves in the properties
of the triplet quantum dot. For example, as a function of
magnetic field, we expect the conductance to follow the
simple relation

G�B� �
2e2

h
sin2	�B� �

2e2

h

�
1�


2

16

1

ln2�TK~B �

�
; (5)

for ~B� TK. This relationship was previously obtained by
other means from the TK2 ! 0 limit of the two-channel
model [11]. Notice that the field derivative of the conduc-
tance diverges as dG

dB / 1=Bln3�TK~B � at low fields. The pre-
diction of the finite temperature, and finite voltage
conductance cannot be made exactly, however, we expect
the above form to hold for the differential conductance at
finite temperature or voltage, with an appropriate replace-
ment of cutoffs, namely,

G�V; T� �
e2

h

�
1�


2

16

1

ln2� TK
max�T;eV��

�
(6)

and dG=dT � 1=max�T; V�.
To model this behavior in more detail it is useful to

consider a simplified model of the quantum dot in which
the Hund’s coupling is taken to be infinite. In this limit, the
states of the quantum dot can be described using a
Schwinger boson representation as

jd1; �i � by�&yj0i; jd2;Mi � by�b
y
M��j0i: (7)

Written in this representation the model becomes

H � H0 � t
X
�

� y
�&yb� � by�& �� � Ed&y& (8)

subject to the constraint nb � &y& � 2.
To develop a controlled many body treatment of this

Hamiltonian, we use a large-N expansion, extending the
number of spin components� from two toN. To preserve a
finite scattering phase shift as N ! 1, we introduce K �
kN bosonic ‘‘replicas’’, where k is fixed. With this device
we obtain a dynamical mean-field theory with scattering
phase shift 	 � 
k and the qualitatively correct logarith-
mic energy dependences [18]. The Hamiltonian used in the
large N expansion is then

H � H0 �
~t����
N

p
X
�;�

� y
�&y

�b� � by�& �� � Ed
XkN
��1

&y
�&�:

(9)

In the large N limit, there are then two self-consistent
noncrossing approximations to the Dyson equations for the
self-energies of the conduction electrons and & fermions
(Fig. 1). Here we briefly sketch the main elements of the
derivation. As in the corresponding equilibrium calculation
[18], the boson behaves as a sharp excitation in the large N
limit, with an average occupancy hnb��i � nb=N. From
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FIG. 3. Temperature dependence of the differential conduc-
tance, normalized with respect to gU � N e2

h sin
2�
k� for the

representative case k � 0:4. Inset shows the 1=T divergence of
the derivative dg=dT.

FIG. 2. Imaginary part of dot t matrix for a variety of voltages
for the case k � 0:4. As the voltage is increased, the singular
central peak splits into two components.
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FIG. 1. The noncrossing approximation for the self-energies of
conduction electrons and & fermions. The solid line denotes the
Larkin Ovchinnikov matrix propagator for the conduction elec-
trons. The dashed line denotes the corresponding Green’s func-
tion of the auxiliary (&) fermions and the wavy line is the
bosonic propagator. Thin lines denote the bare propagator and
full lines the dressed propagator. Each vertex corresponds to the
factor ~t���

N
p .
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the Dyson equations we obtain sets of self-consistent in-
tegral equations for both the retarded and Keldysh self-
energies. The explicit expressions for the retarded self-
energies �&

R and �c
R of the slave fermion (&) and the

conduction electrons (c) are

�&
R�!� � �~t2nbGA���!� � ~t2

�
Z d!0



fc�!0�

1

!0 �!� �� i	
ImGR�!0�;

�c
R�!� � �~t2knbJA���!� � ~t2k

�
Z d!0



f&�!0�

1

!0 �!� �� i	
ImJR�!0�:

(10)

Here JR�!� � �!� Ed � �&
R�!��

�1 and Gc
R�!� �

���
���1 ��c
R�!��

�1 are the retarded propagators for
the & fermions and conduction electrons. The ratio of the
Keldysh to the retarded self-energies self-consistently de-
termines the fermion distribution functions. We can sum-
marize the results of our calculation of the Keldysh self-
energies by providing the distribution functions that they
generate. The distribution function of the conduction elec-
trons is the average

fc �
1

2
�fL�!� � fR�!��; (11)

where fL;R�!� � 1=�e��!�eV=2� � 1� is the equilibrium
distribution function in the left- or right-hand lead. The
distribution function of the auxiliary fermion is

f&�!� �
nb�1� fc�!��
nb � fc�!�

; (12)

where nb � 1=�e�� � 1� determines �. This relationship
can be simply understood as the result of detailed balance
between rate of the decay processes c! b� & and b�
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&! c, and it reverts to the equilibrium Fermi Dirac dis-
tribution in the limit V ! 0.

From these results, we are able to compute the tempera-
ture and voltage dependent current, given by [19]

I�V; T� � N
e2V
h
�
Z
d!

�fL�!� � fR�!��
eV

ImtR�!�

(13)

where tR�!� � �c
R�!�=�1� i
��c

R�!�� is the scattering
t matrix.

We have solved these equations numerically, and the key
results are shown in Figs. 2–4. Figure 2 shows the voltage
dependent t matrix at zero temperature. At zero voltage,
the tmatrix contains a logarithmic singularity, which splits
into two peaks at a finite voltage. In our calculation, the
split Kondo resonance retains its singular structure,
although this is most likely an artifact of taking a limit
where the bosons behave as a sharp excitation. In Fig. 3,
we show the temperature-dependent conductance. The
temperature-dependent deviations from unitary conduc-
tance are determined by the logarithmic singularity in the
phase shift, and in our calculation, these are proportional to
2-3
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FIG. 4. Voltage dependent conductance G�V� � I�V�=V for
the case k � 0:4. Inset: derivative of G�V� showing 1=V
divergence.
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1= ln�TK=max�eV; T��. There is a subtle point here that
needs some discussion. In the Schwinger boson approach,
the number of bound bosons in the Kondo singlet never
exceeds N=2 and the region K � N=2 does not describe an
underscreened Kondo model. Consequently, we are limited
to static phase shifts 	 � 
�K=N�<
=2, so the strictly
particle-hole symmetric case 	 � 
=2 is outside the limits
of our approach. Nevertheless, our numerical results do
capture the expected singularities. Figure 3 shows the
singular form of the temperature-dependent conductance,
with singular 1=T divergence in dg=dT. Finally, Fig. 4
shows the voltage dependence of the conductance, which
has a similar logarithmic singularity at low voltage.

In this Letter, we have proposed that the monotonically
increasing conductance observed as the temperature is
lowered in triplet quantum dots must be associated with
an underscreened Kondo effect. The singular energy and
temperature dependence associated with the Kondo reso-
nance is predicted to give rise to a 1=T divergence in the
temperature dependence of the differential conductance,
and a 1=V divergence in the second derivative of the
voltage dependent current d2I=dV2. These ideas have
been developed qualitatively and illustrated within a func-
tional integral treatment of the underscreened Kondo
model. Experimental confirmation of these predictions
would be the first observed realization of the un-
derscreened Kondo effect.
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