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Temperature Dependence of the Band Gap of Semiconducting Carbon Nanotubes
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The temperature dependence of the band gap of semiconducting single-wall carbon nanotubes
(SWNTs) is calculated by direct evaluation of electron-phonon couplings within a ‘‘frozen-phonon’’
scheme. An interesting diameter and chirality dependence of Eg�T� is obtained, including nonmonotonic
behavior for certain tubes and distinct ‘‘family’’ behavior. These results are traced to a strong and complex
coupling between band-edge states and the lowest-energy optical phonon modes in SWNTs. The Eg�T�
curves are modeled by an analytic function with diameter- and chirality-dependent parameters; these
provide a valuable guide for systematic estimates of Eg�T� for any given SWNT. The magnitudes of the
temperature shifts at 300 K are smaller than 12 meV and should not affect �n;m� assignments based on
optical measurements.
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The temperature dependence of the band gap (Eg) is one
of the fundamental signatures of a semiconductor, provid-
ing important insight into the nature and strength of
electron-phonon (e-p) interactions. The first measure-
ments of Eg�T� date from the dawn of the semiconductor
era [1]. Typically, Eg�T� curves show a monotonic de-
crease with temperature that is nonlinear at low T and
linear at sufficiently high T [2,3].

Semiconducting carbon nanotubes are relatively novel
semiconductor materials [4], with a variety of potential
applications. Despite intensive research since their discov-
ery, it has only recently become possible to perform mea-
surements of the optical gap in individual single-wall
carbon nanotubes (SWNTs) [5–10]. Such measurements,
combined with information from vibrational spectroscopy,
provide a route to �n;m� assignment of SWNTs [5,8,9].
Understanding Eg�T� for nanotubes is extremely important
in this context, since experiments are usually performed at
room temperature and �n;m� assignments are often guided
by comparisons between observed optical transition pat-
terns and the corresponding predictions from calculations
at T � 0 K. Moreover, the Eg�T� signature could provide
extra information for those assignments.

Although it has been demonstrated that many-body qua-
siparticle and excitonic effects are crucial for the correct
description of the photoexcited states and for a quantitative
understanding of such optical measurements [11], the
single-particle gap is still a fundamental quantity because
(i) it is the starting point for more elaborate descriptions
and (ii) trends in the single-particle gap are often preserved
by such refinements. Therefore, this work is devoted to
describing the temperature dependence of the single-
particle band gap of semiconducting SWNTs. From the
calculated results for 18 different SWNTs, a complex
dependence of Eg�T� on chirality and diameter is found,
with an unusual nonmonotonic behavior for certain classes
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of tubes. This behavior arises from the differences in sign
of the e-p coupling associated with low-energy optical
phonons. A model relation describing Eg�T� for any given
SWNT, as a function of diameter and chirality, is proposed.

The temperature dependence of Eg at constant pressure
can be separated into harmonic and anharmonic contribu-
tions: �@Eg=@T�P � �@Eg=@T�har � �@Eg=@T�anh. The har-
monic term arises from the e-p interaction evaluated at the
ground-state geometry. The anharmonic term is due to
thermal expansion. The harmonic term is usually the
more difficult one to evaluate and it has challenged theo-
rists for many years [12–16]. We follow closely the for-
mulation of Allen, Heine, and Cardona [14–16] to
calculate Eg�T� for semiconducting SWNTs. In the spirit
of the adiabatic approximation [14], we write the shift of an
electronic eigenenergy �En;k of band n and wave vector k
due to static atomic displacements from equilibrium as a
second-order Taylor expansion:

�En;k � u � rEn;k �
1
2u �D � u; (1)

where u is a 3N-coordinate displacement vector and D is
the corresponding �3N � 3N� Hessian matrix (N is the
number of atoms). As usual, we express the displacements
as a sum over normal modes [17]:

u��; �� �
X
j

�
�h

2M�!j

�
1=2

"j��; ���a
y
j � aj�; (2)

where u��; �� is the displacement along direction � of
atom � in the unit cell, with mass M�. The electron-phonon
couplings will be directly evaluated using the ‘‘frozen-
phonon’’ scheme [18]; therefore, the sum runs over zone-
center modes j only, with frequency !j. In this approach, a
sufficiently large supercell (equivalent to a fine Brillouin
zone sampling) will be needed to achieve convergence.
The ayj and aj are creation and destruction operators for
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FIG. 1 (color online). Calculated and fitted Eg�T�. Solid dots
and lines correspond to � � 2 SWNTs, whereas open dots and
dashed lines correspond to � � 1 SWNTs.
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phonons, and "j��; �� are components of the properly
normalized polarization vectors.

We now substitute Eq. (2) into Eq. (1) and perform a
thermal average [17]. In the harmonic approximation, the
linear term in u vanishes and the final result is analogous to
that in Ref. [15]:

�En;k �
X
j

@En;k

@nj

�
nj �

1

2

�
; (3)

where nj � �e� �h!j 	 1�	1 is the Bose-Einstein occupation
number of the phonon mode j and the e-p coupling coef-
ficient @En;k=@nj is given by

@En;k

@nj
�

1

2
xj � D � xj; (4)

where xj��; �� � � �h=M�!j�
1=2"j��; �� are frozen-phonon

displacements. From Eq. (1), this is simply the quadratic
contribution to �En;k when the atoms are displaced along a
certain frozen-phonon xj. So, in practice, @En;k=@nj is
calculated by performing electronic structure calculations
for 
xj and by averaging the obtained energy shifts so as
to eliminate the linear term.

Structural relaxations and phonon calculations are per-
formed using the extended Tersoff-Brenner interatomic
potential [19]. Electronic structure is calculated using a
multiple-neighbor, nonorthogonal tight-binding method
[20,21]. Calculations are performed for 18 different
semiconducting SWNTs with diameters d � 7:6–13:5 �A
and spanning the entire range of chiralities: �6; 5�, �7; 5�,
�7; 6�, �8; 6�, �8; 3�, �8; 4�, �9; 4�, �9; 5�, �9; 1�, �11; 1�,
�10; 2�, �12; 2�, �10; 0�, �11; 0�, �13; 0�, �14; 0�, �16; 0�,
and �17; 0� [22].

Figure 1 shows the calculated (dots) values of �Eg�T� �
Eg�T� 	 Eg�0� for all the 18 SWNTs studied. The lines are
best fits to our model relation of Eq. (6), to be discussed
below. For clarity, results are grouped into four panels
according to similar values of the chiral angle �. The
temperature dependence of the band gap is relatively small
compared to bulk semiconductors: From the set of calcu-
lated SWNTs, the largest value of Eg�0� 	 Eg�300 K� is
12 meV for the �16; 0� tube, with �dEg=dT�300 K � 	5:2 �

10	2 meV=K. A strong and apparently complicated chi-
rality and diameter dependence emerges: SWNTs with
� � �n	m�mod3 � 2 (solid dots) have, in general,
smaller gap shifts than � � 1 tubes (open dots). Most
interestingly, some � � 2 SWNTs with small chiral angles
show a nonmonotonic gap variation with temperature that
is positive for small T and negative for larger T. Some of
these trends, in particular, the overall magnitude of the
shifts and their � oscillations, are observed in recent photo-
luminescence measurements in suspended SWNTs [24].

It is challenging to explain this interesting and complex
behavior within a unified framework. The first step is to
analyze the contributions to Eg�T� from the different pho-
non modes. This information is contained in the e-p spec-
03680
tral function for the gap, g2F, defined as [15]

g2F��� �
X
j

@Eg

@nj
��� 	!j�: (5)

Note that @Eg=@nj, defined as the difference between
coupling coefficients for the two band-edge state [from
Eq. (4)], can be positive or negative.

In Figs. 2(a) and 2(b) (lower panels) we plot g2F for the
�10; 0� and �11; 0� SWNTs, which are prototype examples
of � � 1 and � � 2 tubes, respectively. The plots are
restricted to the low-energy phonon branches (shown in
the upper panels), the relevant ones to describe Eg�T� for
T < 400 K. We notice the g2F (solid black line) is highly
structured, reflecting the complexity of the phonon disper-
sion of these materials, even at low energies. In particular,
we find that the low-energy optical ‘‘shape-deformation’’
modes (SDMs) near � provide the most important contri-
butions to g2F at low energies, shown by the red dashed
lines. This family of modes is derived, in a zone-folding
scheme, from the out-of-plane transverse-acoustical (ZA)
branch of graphene and they deform the circular cross
section of the tubes into a sequence of shapes: ellipse
(the so-called ‘‘squashing mode’’), triangle, square, penta-
gon, etc. For the �10; 0� tube, the contribution to g2F from
these modes is strongly negative and dominates the full
g2F up to phonon energies equivalent to 500 K. For the
�11; 0� tube, this contribution is positive and smaller, but
still dominates g2F for T < 200 K. Beyond that tempera-
ture, the negative contributions from other modes start to
become important. This competition explains the non-
monotonic behavior and smaller magnitudes of Eg�T�
shifts for � � 2 SWNTs.
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FIG. 2 (color online). Dimensionless g2F (lower panels) and
phonon spectra (upper panels) for (a) �10; 0� and (b) �11; 0�
SWNTs. Lower panels: Solid black lines are the total g2F and
red dashed lines are the contributions from the shape-
deformation modes (SDMs) near �. The g2F is obtained from
Gaussian broadening (% � 23 K) of individual phonon contri-
butions. Shapes for each SDM are also shown in the figure.
Upper panels: Phonon frequencies (�) measured in both cm	1

and K. SDM branches are highlighted by red dashed lines.
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Approximate model relations for Eg�T� are common in
semiconductor physics [25]. Despite not being exact, they
are useful tools for a quick assessment of Eg�T� for a given
material. We propose a model relation for Eg�T� of semi-
conducting SWNTs in the temperature range of T < 400 K
as a two-phonon Viña model [26]:

�Eg�T� �
�1�1

e�1=T 	 1
�

�2�2

e�2=T 	 1
; (6)

where �1 and �2 (�1 < �2) are effective temperatures for
the two ‘‘average phonons’’ and �j�j � @Eg=@nj are
their effective e-p coupling coefficients. The resulting
fits are shown in Fig. 1 as solid �� � 2� and dashed �� �
1� lines. Note that this model is equivalent to replacing the
highly structured spectral functions shown in Fig. 2 by only
two delta functions for each tube. Therefore, the resulting
fits will necessarily be approximate. Nonetheless, as we
see from Fig. 1, the largest deviation from numerical and
model results is only 2 meV in the whole T < 400 K range.
More importantly, as we shall see below, we are able to
obtain a completely coherent and physically justified de-
pendence of the parameters �j and �j on the SWNT’s
diameter and chirality.

We start by considering the parameter �1, the effective
frequency for the lowest-energy phonon modes. These
03680
modes dictate the low-temperature (T & 100 K) behavior
of Eg�T�. These are the SDMs derived from the ZA branch
of graphene. In graphene, this branch has a quadratic
dispersion at low energies and momenta. Therefore, within
a zone-folding description, we propose that the energies of
these modes (and therefore �1) should scale as the inverse
square of the nanotube diameter d (in dimensionless units,
d �

�������������������������������
n2 �m2 � nm

p
):

�1 �
A

d2 : (7)

Therefore, �1 depends only on diameter and not on
chirality.

The remaining parameters ( �1, �2, and �2) depend on
chirality. The task of finding this dependence is enor-
mously facilitated by the following ansatz: Dependence
on chirality can be expressed as polynomial expansions
f�!� of a ‘‘chirality variable’’ ! � �	1�� cos�3��. This
ansatz is reminiscent of trigonal warping effects in graphite
[27,28] and is justified a posteriori by our numerical
results. We consider up to second-order terms:

f"�!� � #"
1 !� #"

2 !
2; (8)

where " defines the parameter under consideration.
The parameter �1 deserves special attention because it

must embody the intriguing sign dependence of g2F on �
for the SDMs described above. We find the following
relation:

�1 � �0
1 � f�1

�!�d: (9)

The derivation of this result involves a fascinating connec-
tion between dynamical and static radial deformations and
will be presented elsewhere [29]. Similar ‘‘family behav-
ior’’ [28] and sign oscillations with � occur for static
deformations induced by hydrostatic pressure [29] and
uniaxial stress [30].

We now turn to the chirality and diameter dependence of
�2 and �2. These parameters effectively represent a large
number of phonon modes that start to become ‘‘active’’ at
somewhat higher temperatures (between 350 and 500 K).
In this energy range, the phonon density of states starts to
become substantial, and we should expect that character-
istics of particular nanotubes (chirality dependence) should
gradually disappear and give rise to universal, graphitelike
features. Of course, this is exact only in the limit of large d;
therefore, for the relatively narrow tubes considered here, it
is wise to include some chirality dependence [in the form
of Eq. (8)] that decays with increasing diameter. We there-
fore propose the following expressions:

�2 � �1
2 �

f�2
�!�

d
; (10)

�2 �
1

d

�
B�

f�2
�!�

d

�
: (11)

The overall 1=d factor in �2 is simple to understand, since
�1 � �2 � limT!1

dEg

dT ; i.e., �2 is the graphitelike contri-
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bution to the limiting slope of Eg�T�. We expect the high-
temperature renormalization of the graphite bands around
the Fermi point to be simply a rescaling of the Fermi
velocity. Since the semiconducting SWNT gaps are ob-
tained, in a simplified view, by slicing the band structure of
graphene, we expect the corresponding change in the gap
to be proportional to the gap itself, i.e., to 1=d.

Equations (6)–(11) provide a ready-to-use recipe for
estimating gap shifts with temperature for any nanotube
in this diameter range [31]. The ten parameters are ob-
tained by best fits: A � 9:45 � 103 K, �0

1 � 	1:70 �
10	5 eV=K, #�1

1 � 1:68 � 10	6 eV=K, #�1
2 � 6:47 �

10	7 eV=K, �1
2 � 470 K, #�2

1 � 1:06 � 103 K, #�2
2 �

	5:94 � 10	2 K, B � 	4:54 � 10	4 eV=K, #�2
1 �

	2:68 � 10	3 eV=K, and #�2
2 � 	2:23 � 10	5 eV=K.

Finally, we address the effects of thermal expansion in
Eg�T�. Available descriptions of thermal expansion of
isolated SWNTs seem to be controversial [32,33]. We pro-
pose that, for low-dimensional structures, one should de-
scribe thermal expansion effects in the band gap in terms of
anharmonic changes of internal coordinates (bond lengths
and angles), rather than lattice constants. The C-C bond
changes quite similarly in all carbon structures (including
diamond), although the lattice constants may behave quite
differently [34]. Therefore, we use the well-established
experimental data for the thermal expansion of diamond
[35], where the thermal expansion of the lattice mirrors
closely the thermal expansion of the bond, to estimate the
gap shifts due to anharmonic effects. This leads to very
small corrections in our calculated Eg�T� values. For in-
stance, the additional gap shift at 300 K for a �10; 0� tube
due to anharmonic effects is only 	0:2 meV. Therefore,
we can safely neglect these effects in comparison with the
harmonic contributions.

In conclusion, the calculated temperature dependence of
the band gap of semiconducting carbon nanotubes shows a
complex but systematic diameter and chirality dependence.
Most gap shifts at 300 K are negative and small (less than
12 meV) with respect to 0 K. Therefore, temperature
effects should not interfere with �n;m� assignments.
Tubes with � � 1 have generally larger shifts than � � 2
tubes, and some � � 2 tubes with small chiral angles even
display a nonmonotonic Eg�T� curve. All these features are
explained and reproduced by a two-phonon model relation,
with diameter- and chirality-dependent parameters.
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