PRL 94, 036404 (2005)

PHYSICAL REVIEW LETTERS

week ending
28 JANUARY 2005

Accurate, Efficient, and Simple Forces Computed with Quantum Monte Carlo Methods

Simone Chiesa® and D. M. Ceperley’
Department of Physics, University of Illinois—Urbana-Champaign, Urbana, Illinois 61801, USA

Shiwei Zhang*

Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
(Received 20 September 2004; published 24 January 2005)

Computation of ionic forces using quantum Monte Carlo methods has long been a challenge. We
introduce a simple procedure, based on known properties of physical electronic densities, to make the
variance of the Hellmann-Feynman estimator finite. We obtain very accurate geometries for the molecules
H,, LiH, CH,4, NH;, H,O, and HF, with a Slater-Jastrow trial wave function. Harmonic frequencies for
diatomics are also in good agreement with experiment. An antithetical sampling method is also discussed

for additional reduction of the variance.
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The optimization of molecular geometries and crystal
structures and ab initio molecular dynamics simulations
are among the most significant achievements of single-
particle theories. These accomplishments were both
possible thanks to the possibility of readily computing
forces on the ions within the framework of the Born-
Oppenheimer approximation. The approximate treatment
of electron interactions typical of these approaches can,
however, lead to quantitatively, and sometimes qualita-
tively, wrong results. This fact, together with a favorable
scaling of the computational cost with respect to the num-
ber of particles, has spurred the development of stochastic
techniques, i.e., quantum Monte Carlo (QMC) methods.
Despite the higher accuracy achievable for many physical
properties, the lack of an efficient estimator for forces has
prevented, until recently [1-3], the use of QMC methods to
predict even the simplest molecular geometry. The chief
problem is to have a Monte Carlo (MC) estimator for the
force with sufficiently small variance. For example, in all-
electron calculations, a straightforward application of MC
sampling of the Hellmann-Feynman estimator has infinite
variance. This can be easily seen from the definition of the
force. For a nucleus of charge Z at the origin, the force can
be written, together with its variance, as a function of the
charge density p(r) as

1
F = Zfdrp(r) —r3; o =272 [drp(l') — — F~
r r

)

Since the electronic density is finite at the origin, the
variance integral diverges.

In this Letter, we propose a modified form for the
force estimator which has finite variance. This estimator
is then used to calculate forces and predict equilibrium
geometry and vibrational frequencies for a set of small
molecules. Without loss of generality we consider only the
z component of the force on an atom at the origin. In a
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QMC calculation based in configuration space, the charge
density is a sum of delta functions: p(r) < > . 6(r — r’),
where the sum is over all N, electron positions and all MC
samples. We consider separately the electrons within a
distance R of the atom and those outside. The contribution
to the force from charges outside, F ZO , can be calculated
directly with the Hellmann-Feynman estimator in Eq. (1).
The contribution from inside the sphere is responsible for
the large variances in the direct estimator. It is convenient
to introduce a ‘““force density” defined as the force arising
from electron charges at a distance r from the origin:

f.(r) = Zfde(r, 0, &) coso. (2)

Then the force is given as
R
F,—FO+ [ £.(r)dr. 3)
0

The force density is a smooth function of r that tends to 0
linearly as r approaches the origin. The force density for H
in a LiH molecule computed with Hartree-Fock and two
different QMC estimators is shown in Fig. 1. As expected
the bare force estimator fluctuates wildly at small r.
Because the force density is a smooth function, we can
represent it in the interval (0, R) with a polynomial

M
fz(r)z Zakrk (4)
k=1

and determine the coefficients, a;, by minimizing

- ]0 ® a0 - LR 5)

where " is a weight factor used to balance contributions
from different values of r.

Since the relation between the force and the force den-
sity is linear, and the relation between the fitting coeffi-
cients and the electronic density is linear, we can directly
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FIG. 1. Force density along the z direction for the H atom in
LiH. The bond is along the z axis, with a length of 3.316 bohrs.
The continuous black curve is calculated from the Hartree-Fock
orbitals. The dashed line is the estimate of f, using the bare
estimator. Circles are obtained in an identical QMC simulation
using the antithetic sampling technique outlined in the text.

write the force as averages over moments of the force
density. After some manipulations we arrive at

N, A
F.=FO+ Z< (r) ﬁ> , ©)
Z z ; 8 r? MC

where the new estimator function is
M
g =R =1 e, @)
=1

The coefficients c; are determined by ¢ = S~ 1h, where the
Hilbert matrix S and the residual vector h are

Rj+1

Rm+k+j+l
h;, = .
R

T mA kTl

®)

Sk

Note that for the bare estimator g(r) = (R — r). Because
of the restriction on the basis, the variance of the new
estimator is finite as long as m > —1/2. We have numeri-
cally found that the weighting factor m = 2, where each
volume element is weighted equally, gives the lowest
variance estimate of the force.

To derive the estimator we have used the fact that f,(r)
goes linearly at small r [4]. This is the crucial property that
allows one to filter out the s-wave component of the
density responsible for the variance divergence. The origi-
nal estimator is correct for any arbitrary charge density,
while the new filtered one uses physical properties of the
charge density to reduce the variance. The variance de-
pends on the fitting radius R and on the basis set size M.
As R increases, the size of the basis must increase, which
increases the variance. Charge densities corresponding to
low energy states must be smooth, and we typically find
that only two or three basis functions are needed. The size
of the basis can be reduced by using more appropriate basis
sets. For example, in all calculations reported below we
used the expansion

M
F) =120 ark, ©)
k=0

where f5P is the force density of a single determinant wave
function, which can be readily computed from the orbitals.
The improved basis allows a smaller polynomial set and a
reduction of the variance. In Fig. 2 the dependence of the
bias on the basis set type and size is shown for the case of a
variational Monte Carlo (VMC) simulation on LiH at a
bond length of 3.316 bohrs.

The trial wave functions Wy used in all cases were of the
Slater-Jastrow form. The orbitals were obtained from a
Hartree-Fock calculation using CRYSTAL98 [5]. The
electron-electron and electron-proton Jastrow factors had
the form of exp[ar/(1 + br)], with a and b optimized by
minimizing |E,,. — (E)| [6] over points sampled from
|W,|?>. The time step in the diffusion Monte Carlo
(DMC) simulations was chosen to give an acceptance ratio
of 98%, a value for which the time step bias on forces was
within the statistical error bars.

Since the exact density is needed for the Hellmann-
Feynman theorem, forward walking [7] or one of the varia-
tional path integral algorithms [8,9] is needed in order to
evaluate the force estimator. An example of the conver-
gence of forward walking is shown in Fig. 3. The force as a
function of the forward-walking projection time quickly
reaches a plateau corresponding to the exact value. In this
example, the variational forces are far from correct. This
discrepancy results from the lack of full optimization of the
trial wave function made of localized basis orbitals and
atom centered Jastrow factors and can be reduced some-
what by including Pulay terms [2]. In DMC, forward
walking eliminates the need for the Pulay corrections.

The equilibrium geometries were computed by fitting
the QMC forces in the proximity of the equilibrium ge-
ometry to a polynomial with the appropriate symmetry.
Figure 4 shows the force in hydrogen fluoride in a 2%
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FIG. 2. Dependence of the VMC force on the expansion basis,
for LiH with a bond length of 3.316 bohrs. The fitting radius
R = 0.6 bohr. The definitions of the basis functions are in
Egs. (4) and (9). The forces on H and Li are different because
of the lack of full optimization of the VMC wave function (see
the text).
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FIG. 3. Projection of the force in LiH using forward walking.
The points at negative imaginary time give the VMC values.
Values at O are the mixed estimates of the DMC simulation.

interval around the equilibrium geometry. The equilibrium
geometries are reported in Table I together with those given
by coupled cluster single and doubles with perturbative
triples [CCSD(T)], density functional theory (DFT) using
the Becke-3-Lee-Yang-Parr (B3LYP) and the Perdew-
Burke-Ernzerhof (PBE) functional, and experiments. The
differences between QMC and experimental values are in
all cases less than 0.4% and closer to the experiment than
the other techniques. For diatomics it is easy to provide an
estimate of the harmonic vibrational frequencies starting
from the derivative of the force curve at equilibrium ge-
ometry. The QMC frequencies, reported in Table II, are in
good agreement with the experiment, with errors compa-
rable to those from CCSD(T) and DFT PBE or B3LYP.
This suggests that forces computed within our approach are
accurate also away from the equilibrium and could be used
in molecular dynamics calculations or to optimize molecu-
lar geometries.
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FIG. 4. DMC force in hydrogen fluoride. Left panel: evolution
of the force over forward-walking time. Right panel: fully
projected forces as a function of nuclear distance. R4 is the
experimental equilibrium distance.

TABLE I. Equilibrium distances in A. Experimental,
CCSD(T), and B3LYP values were taken from Ref. [10]. The
CCSD(T) and the B3LYP results were obtained using the cc-
pVTZ basis set with the exception of LiH where the 6-311G* set
was used. PBE results [11] were all obtained using the aug-cc-
pVTZ basis set.

QMC  Exp. CCSD(T) B3LYP PBE
H, 0.7419(4) 0741 0743 0743 0751
LiH 1.592(4) 1.596  1.618 1.595  1.606
CH, 1.091(1) 1.094  1.089  1.088 1.096
NH; (N-H)  1.0092) 1.012 1014 1014 1.023
NH; (H-H) 1.6242) 1.624 1616  1.624 1.634
H,0 (O-H) 0959(2) 0956 0959 0961 0971
H,0 (H-H) 15193) 1517 1508 1520 1531
HF 0919(1) 0918 0917 0923 0932

The only source of systematic error in our calculations
that cannot be simply addressed is the fixed-node error. In
fixed-node DMC, the random walk is forbidden to cross the
nodes of the trial wave function in order to prevent the loss
of efficiency due to the fermion antisymmetry. If the nodes
are accurate, so is the QMC energy and electronic density;
hence the force. For incorrect nodes, the energy is an upper
bound to the true energy, but such cannot be said for the
force. It is also not necessarily the case that the forces
obtained from Eq. (1) are equal to the gradient of the fixed-
node energy [13—15]: this is guaranteed only in the limit of
exact nodal surfaces. The high quality of the geometries
and vibrational frequencies suggests that these errors, at
least for the cases treated in this Letter, are negligible. This
is perhaps not surprising, since the electronic density is a
one-electron property, while the nodal error is a many-
body effect.

We have also tested another method to further reduce the
variance of the Hellmann-Feynman estimator. The filtered
estimator performs well on the hydrogen atom, but for
heavier nuclei the error bar grows and seems to scale as
Z3. In those cases the new method can potentially be very
useful, with error bars scaling between Z and Z2. The
method is based on the observation that, while electrons
in the core cause large fluctuations in the force density,
they contribute very little to it. A standard approach to

TABLE II. Harmonic frequencies in cm™!'. Experimental,

CCSD(T), and B3LYP values were taken from Ref. [10]. The
CCSD(T) and the B3LYP results were obtained using the cc-
pVTZ basis set with the exception of LiH where the 6-311G* set
was used. PBE results [12] were obtained using ad hoc Gaussian
basis sets.

QMC Exp. CCSD(T) B3LYP PBE
H, 4464(18) 4410 4420 4401 4323
LiH 1445(20) 1369 1414 1405 1380
HF 4032(266) 4181 4085 4138 4001
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reduce the variance of a Monte Carlo estimate is the use of
antithetic variates [16]: a positive fluctuation is paired with
a negative fluctuation. Suppose the random walk arrives at
a multidimensional electronic configuration R, with p ( =
1) electrons inside a radius R,, = R of an atom located at
the origin. We obtain an antithetic configuration R’ by
reflecting all p core electrons about the origin. We then
estimate the force contribution due to the p electrons using
both R and R’, assigning a weight factor of w(R') =
|#(R")/(R)|? to R'. Their joint contribution to the estima-
tor in Eq. (6) is Z“WT(R/)zig(ri)zirﬁ, where the sum runs
over the p core electrons. Since w — 1 as R,, — 0, fluc-
tuations in the core are much reduced.

Within VMC this scheme can be implemented exactly,
leading to a dramatic reduction of the variance as can be
noticed from Fig. 1. However, this estimator is nonlocal
and, in DMC, suffers from the same problems as nonlocal
pseudopotentials, making an unbiased implementation not
straightforward. We postpone further discussion of the
antithetic method to a future paper.

Two other approaches have been introduced recently for
the computation of forces in QMC. Filippi and Umrigar [1]
have computed forces for diatomics by correlating random
walks for interatomic separations a and a’. In DMC the
difficulty associated with the nodal error and the branching
factor was overcome by neglecting some types of correla-
tion. The main drawback of a finite difference method is
the difficulty of calculating all the components of the force
simultaneously; for a system of N atoms this method
would require 3N separate force calculations.

The other approach, introduced in Ref. [3], is closer to
our method. It is based on a “‘zero-variance’ version of the
Hellmann-Feynman estimator and can be understood in the
framework of this Letter: one can prove that it corresponds
to filtering out the s-wave component of the density leav-
ing the force density unchanged. The semilocal character
of the zero-variance estimator makes its DMC implemen-
tation trickier. To overcome this problem there have been
attempts [2,17] to use correction terms similar in nature to
the Pulay terms in single-particle approaches. In practice,
this scheme requires extensive optimization and, although
promising, it is unclear if it will be viable for more com-
plicated cases. In addition, the value of the force is very
sensitive to small errors [17] in the charge density and the
optimization within a stochastic technique is probably not
sufficiently stable to eliminate these errors.

In conclusion, we have developed a simple method for
computing forces within quantum Monte Carlo methods
and used it to find the equilibrium geometries for small
polyatomic molecules. This is the first time that a QMC
technique has been used to predict geometries of molecules
beyond diatomics. The only overhead in the calculation is
the necessity of determining unbiased estimators, which
requires the use of either forward-walking or reptation MC

techniques. The new method leads to very accurate forces
despite errors from the fixed-node approximation and from
its contribution to the energy derivatives. Extension of the
method, including the antithetic estimator technique, to
heavier atoms and to atoms with pseudopotentials [18] is
under investigation.
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