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The bifurcation scenario in a practically interesting nonlinear wave system is investigated by using a
new scheme that is performed in a purely nonlinear wave framework with the Doppler effect taken into
account. High-dimensional tori with three or four competing frequencies are observed. With variation of
parameters a riddling of the orbit may occur intermittently due to tangency in certain dimensions, which
temporarily spoils the toroidal topology and induces an energy burst where spatial coherence of the wave
is lost.
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I. Introduction.—One of the mechanisms proposed for
explaining the onset of turbulence is the Ruelle-Takens
scenario. In this picture, chaos occurs when the third
incommensurable frequency sets in that destroys the two-
dimensional (2D) torus [1–3]. However, as pointed out in
Ref. [4], experimental work served neither to confirm the
theory nor to refute it. For example, in the drift-wave
experiment this route is recognized to be responsible for
the onset of weak turbulence [5], while in the nonlinear
electronic oscillator circuit quasiperiodicity and chaos with
three competing frequencies can appear in different pa-
rameter regimes [4], and in the Rayleigh-Bénard convec-
tion experiment nonchaotic states with four or five
incommensurable frequencies are observed [6]. It is argued
that spatial localization of the modes plays an important
role in determining the route to chaos in an extended
system [6].

Another relevant subject is intermittency [7–10], where
the system switches back and forth intermittently between
qualitatively different behaviors. For instance, in type-I
intermittency the system is predominantly periodic with
occasional ‘‘bursts’’ of chaotic behaviors, which, in map-
ping systems, are believed to arise from a tangent bifurca-
tion. Intermittency is also observed in experiments, e.g., in
Rayleigh-Bénard convection [11] and in plasmas [12]. The
mechanism for intermittency in such spatially extended
systems is still open.

With a driven-damped nonlinear wave system in pre-
vious works we revealed a mechanism for the critical
transition to spatiotemporal chaos [13,14]. In the present
Letter we focus on the regime before the transition. In this
regime the wave is normally regular in space; however,
with increasing driving force it becomes more and more
erratic, and, in particular, when approaching the critical
transition point bursts may occur intermittently in the wave
energy. For understanding these phenomena we use a new
method that allows us to pursue the bifurcation scenario
entirely in a nonlinear wave framework; because of the
wave propagation the Doppler effect has to be taken into
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account [15]. In Sect. II we show that a steady wave (SW)
may lose its stability through a Hopf bifurcation; in
Sect. III further bifurcations to high-dimensional tori
with three or four competing frequencies are identified;
in Sect. IV we show that with the variation of parameters a
tangency may occur in certain dimensions, providing a
possibility for the orbit to riddle through the toroidal(like)
structure intermittently, which is responsible for the energy
bursts. Finally, Sect. V is a discussion.

II. Hopf bifurcation from a steady wave.—The model
equation is
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��; "� are two control parameters and a; c; f; � are fixed
the same as in Refs. [13,14]. With vanishing ��; "� Eq. (1)
is derived, respectively, as an alternative to the Korteweg–
de Vries equation, in fluids to describe shallow water wave
and in magnetized plasmas to describe drift wave [16]. In
Refs. [13,14] a crisis-induced transition to turbulence in
Eq. (1) is reported; for � � 0:65 the critical transition
point is " � 0:20. In the present work we focus on the
��; "� regime before the transition.

Let us start from an SW solution of Eq. (1) in the form of
�0�x��t�. Like any solitary wave, an SW has constant
mode amplitudes and phases if observed in a reference
frame moving in its group velocity; i.e., it is a fixed point in
the Fourier space. For studying bifurcation behaviors from
such a fixed point, we use a new scheme as follows [15].
When solving Eq. (1) with the pseudospectral method we
expand ��x; t� �
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FIG. 1. Phase plot of (a) �2��� vs �1��� and (b) A2���=2 vs
A1���=2 for � � 0:60 and " in the range of 0:06–0:07; the
central line is obtained by solving the SW equation.
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FIG. 2. Poincaré section �3��
�� vs �2���� cut at �1��� � 1;�

for (a) " � 0:186; 0:187; 0:188 and (b) " � 0:192, � � 0:65; the
inset is phase plot �3��� vs �2��� for " � 0:188.
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FIG. 3. Spectrum of A1���=2 for (a) " � 0:1865,
(b) " � 0:188, and (c) " � 0:189, � � 0:65.

PRL 94, 034101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 JANUARY 2005
and hence in every time step we have information on
f ~�k�t�g. Rewriting ��x; t� �

PN
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we have

Ak�t� � 2
����������������������������������������������������
�Re ~�k�t��

2 � �Im ~�k�t��
2

q
;

tan#k�t� � Im ~�k�t�=Re ~�k�t�: (3)

After its principal value is obtained, #k�t� can be deter-
mined within mod�2�� according to the signs of Re ~�k�t�
and Im ~�k�t�.

However, the f#k�t�g thus obtained are the phases in the
�x; t� frame; we need to transform them to the frame � �
x��t, � � t where the SW is a fixed point. In this frame,
if expanding ���; �� �

PN
k�1 Ak��� cos�k�� �k����, the

following relation holds:

�k��� � #k��� � k�t; (4)

here phase shift k�t arises from the Doppler effect de-
pending on wave number k. From the knowledge on
fAk���; �k���g the bifurcation behaviors can be revealed.
Here mod�2�� is taken in f�k���g. When solving Eq. (1)
grid numbers N � 26–29 are tested, and in the chosen
regime the results agree with each other from the viewpoint
of dynamics. For the present purpose N � 26 is used.

To test the method first we calculate fAk���; �k���g for a
stable SW �0���, e.g., � � 0:60, " <�0:065; indeed,
fAk���; �k���g tend to constant values which are in agree-
ment with that obtained by solving the SW equation
@�0=@� � 0. At "� 0:065 the SW loses its stability. In
Figs. 1(a) and 1(b) we plot �2��� vs �1��� and A2��� vs
A1��� for several " values in the range 0:065–0:07; here and
in the following transient states have been omitted. In both
plots one can see a set of circles with a line penetrating
through the center. The circles are obtained by the present
procedure; the line shows the SW solutions obtained from
@�0=@� � 0. The dashed parts of the lines indicate that the
corresponding SW’s are unstable; it is from there the limit
cycles are bifurcated, obviously due to a Hopf instability.

III. Further bifurcations to high-dimensional tori.—In
the following we fix � � 0:65 and vary " to study the
bifurcations further from the limit cycles. Figure 2 shows
03410
Poincaré sections �3���� vs �2����; here �� denotes the
moments when �1��� � 0 or �. For " � 0:186 the orbit
is a limit cycle, and in Fig. 2(a) it manifests as two isolated
points. Surrounding the two points one can find nested
circles obtained for " � 0:187 and 0.188, respectively,
indicating that the limit cycle has bifurcated into 2D torus
(in the following we see that in these cases the third
frequency already sets in; since it is very weak, the
Poincaré sections still look like smooth circles). The inset
of Fig. 2(a) depicts �3��� vs �2��� for " � 0:188 without
taking the Poincaré section; the orbit displays as a wide
cyclic band. With an increase of " the circles in Fig. 2(a)
gradually become larger and even the section points may
become somewhat scattered. Figure 2(b) is an example of
�3���� vs �2���� for " � 0:192, where one can find two
patches locating about at the places where the nested
circles used to be in Fig. 2(a). Compared with 2(a) the
patch sizes in 2(b) are larger and the points are a little
scattered, indicating that the 2D torus becomes ‘‘fat’’ and
further bifurcation(s) have occurred. In other Poincaré
sections in this regime, �k��

�� vs �k0 ��
�� or Ak��

�� vs
Ak0 ��

��, one can also find two well-separated patches as
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FIG. 4. Evolution of wave energy E�t� for � � 0:65 with
(a) " � 0:192 and (b) " � 0:192 94.
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in Fig. 2, suggesting that the topology still has a skeleton of
the 2D torus; it is something like a ‘‘coarse doughnut.’’

By calculating the Fourier spectrum, e.g., of Ak���, one
can clearly see how a limit cycle bifurcates to high-
dimensional tori. In the spectrum of a limit cycle, e.g., " �
0:186, there is only one independent frequency at !1 �
0:42. With increasing " a new frequency appears. Figure 3
shows the spectrum of Ak�1���: Figure 3(a) For " �
0:1865, one can find two incommensurable frequencies,
!1 � 0:42, !2 � 0:13, as well as their beat frequencies; it
is even noticed that the third frequency, !3, starts to show
up at a very low frequency. Figure 3(b) For " � 0:188,
evidently the spectrum is composed of three competing
frequencies !1, !2, and !3. When " � 0:189 in Fig. 3(c),
one can identify a new frequency !4 and its beat frequen-
cies with three other ones. For " up to about 0:191 the
spectra are still isolated lines, and the attractors are of
higher dimensional toroidal(like) topology.

When " is increased to �0:192, detailed identification
becomes difficult. Nevertheless, as one has seen in
Fig. 2(b), the attractor still has a skeleton of the 2D torus.
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FIG. 5 (color online). Poincaré section Ak��
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With further increasing ", however, a new phenomenon
sets in, as will be described in the next section.

IV. Riddling of orbit and intermittent energy burst.—
Figure 4 shows evolution of the wave energy, E�t� � 1

2� �R
2�
0

1
2 ��

2 � a�2
x�dx, for 4(a) " � 0:192 and

4(b) " � 0:192 94. A remarkable phenomenon is that in
4(b) E�t� bursts up occasionally in contrast to smooth
oscillations in 4(a).

To understand this new phenomenon, let us plot the
Poincaré section Ak�1��

�� vs A1��
�� at �1��

�� � 0;�.
With variation of f�; �g one can also observe the bifurca-
tion sequence of fixed point ! limit cycle ! 2D torus !
high-dimensional tori(like). With the doughnut becoming
increasingly fat and coarse, the section patches are gradu-
ally enlarged and the section points become a little scat-
tered. If there is no burst, like in the case of " � 0:192, two
patches of the Poincaré section are clearly separated in any
dimension, similar to Fig. 2(b). When an intermittent burst
occurs, however, the situation is different. Figure 5 shows
Ak���� vs A1���� for " � 0:192 94, in the periods of
5(a) � � 15 000–20 000, 5(b) � � 20 000–25 000, and
5(c) and 5(d) � � 35 000–45 000, with k � 3 in 5(a)–
5(c) and k � 2 in 5(d), respectively. In the plots, crosses
or bullets denote the section points cut at �1 � 0= �.
Figure 5(b) corresponds to a time period when E�t� oscil-
lates smoothly; one can see that the two patches almost get
touched; that is, a tangency occurs. Figure 5(a) is in a
period when E�t� experiences a narrow burst as well as
smooth oscillations; in this case there are still two patches
concentrated with crosses and bullets, respectively; how-
ever, a few cross or bullet points have invaded (or riddled)
into the region bullets or cross points used to occupy. If
examining the data carefully one finds that the onset of the
burst is just related to the occurrence of the riddling.
Finally, Fig. 5(c) corresponds to a time interval when
E�t� is completely in a bursty period; one can see that the
section points become extremely scattered, and the bullets
and crosses are mingled with each other. Obviously in this
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case no toroidal topology is sustained at all. Our inves-
tigation shows that the tangency and riddling occur first
between two amplitudes [e.g., A3 vs A1 as in Figs. 5(a)–
5(c)], then the riddling spreads to other ones. In Fig. 5(d)
we plot A2��

�� vs A1��
�� for the same period of 5(c), where

cross or bullet points are also very scattered, despite the
fact that in the smooth oscillating periods the two section
patches of A2��

�� vs A1��
�� are far apart from each other.

The above results convince us that the bursts in wave
energy are induced by orbit riddlings. The picture we
draw from the above phenomena is as follows: as the
coarse doughnut becomes ‘‘fatter’’ the central hole of it
vanishes in certain dimensions; that is, a tangency occurs.
The orbit then has a possibility to riddle through the
vanished hole and can be wandering in a much larger phase
space. As a result, the toroidal topology is spoiled, induc-
ing the mode amplitudes and hence the wave energy to
burst up chaotically.

Figure 6 is the spectrum of A1��� for " � 0:192 94:
6(a) A smooth oscillation period, in which one can identify
two major competing frequencies characteristic of the
‘‘skeleton’’ of 2D torus, in contrast to the bursty period
in 6(b), where no any characteristic frequency can be seen.

We also plotted space-time patterns for " � 0:192 94;
the spatial coherence is temporarily lost in the bursty
periods.

V. Conclusion and discussion.—We have shown in a
nonlinear wave system that a steady wave may lose its
stability through a Hopf bifurcation. Further bifurcations to
higher dimensional tori with up to four competing frequen-
cies have also been identified; this observation is consistent
with the experiments in fluids and plasmas [3,4,6]. With
increasing driving force a tangency occurs in certain di-
mensions; in this case an orbit riddling may happen inter-
mittently. The orbit riddling temporarily destroys the
toroidal topology, which is responsible for the intermittent
burst of the wave energy where the spatial coherence is
lost. Since they occur in the regime before the transition to
a strong turbulent state, these phenomena are presumably
03410
related to so-called weak turbulence. Compared to bursts in
strong turbulence [14], the bursts in the present case show
different features, and their mechanisms are completely
different.

In a model of three drift-wave interaction [17] chaos
occurs when the third frequency appears, which supports
the prediction of the Ruelle-Takens scenario. In our ex-
tended system, however, the toroidal topology remains
even when three or four competing frequencies are present.
Probably spatial localization plays a role in this respect.
Further investigations are needed to confirm this
conjecture.

Our investigation is done by directly solving the non-
linear wave equation without further restriction for the
wave solutions except for the periodicity, so we are con-
vinced that the revealed phenomena reflect what happens
in the nonlinear wave. It is expected that the method can be
applied to other spatially extended systems for theoretical
and experimental analyses for the nonlinear dynamics.
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