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Universal Attosecond Response to the Removal of an Electron
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When an electron is suddenly removed, a universal response of the system is shown to occur on an
attosecond (10™'8 s) time scale. During this response time, which lasts about 50 attoseconds, the density
of the created hole changes in a characteristic way. Explicit examples are shown. The results are analyzed
in terms of the eigenstates of the residual ion and related to the filling of the exchange-correlation hole
associated with the electron in the ground state of the system by the remaining electrons.
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The electronic structure of atoms, molecules, clusters,
and condensed matter has been the central subject of an
enormous number of experimental and theoretical inves-
tigations in physics and chemistry, and more recently also
in biology. Owing to the long-range interaction between
electrons, their motion is rather correlated which often
renders the understanding of the electronic structure diffi-
cult. Not surprisingly, many experimental and theoretical
tools have been developed over the years to probe the
system’s electronic structure. A particularly appealing ap-
proach to study this structure is to remove a single electron
from the system in a controlled way. Traditionally, this is
done by photoelectron or photoemission spectroscopy
[1,2] which provides detailed information on the binding
energy and other properties the electron ejected by photo-
absorption has had in the system. In the absence of electron
correlation this information can be, at least in principle,
computed accurately. Inclusion of electron correlation is,
however, mandatory to be able to explain the experimental
observations. Electron correlation gives rise to a whole zoo
of phenomena [1-3].

In the present work we investigate the short-time re-
sponse of the system to the sudden removal of an electron.
We demonstrate that a remarkable response has already
taken place before 50 attoseconds [(as); 1 as = 1078 g]
have passed after the removal. The findings and their
interpretation make clear that this response is universal
for electronic systems, and it provides valuable informa-
tion on the nature of electron correlation.

By suddenly removing an electron from a system in its
ground state |®,), a state |P;) with one less electron is
prepared which is not an eigenstate of the system.
Nonstationary behavior will take place and the hole created
in the system will migrate in space as a function of time.
The density of this hole is simply given by the difference of
the electron density po(F) = (®y|p(7, 1)|Py) in the ground
state and the electron density p;(7, t) = (®,|p(#, 1)|D;) in
the initially prepared nonstationary state:

07, 1) = po(7) — pi(7 1). (1)

The quantity p is the usual density operator [4]. Q(F, 1)
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PACS numbers: 42.65.Re, 03.67.Lx, 31.10.+z

describes the density of the hole, or briefly hole density, at
position 7 and time ¢. By construction the hole density is
normalized at all times .

As usual, the density operator is represented in a one-
particle basis {¢,(7)}, often called orbitals, p(7, 1) =
S 0 ®p (P, (Pay a,, where the a, and a, are the corre-
sponding electron creation and annihilation operators [4].
Inserting this representation into Eq. (1) reveals the density
character of Q:

O, 1) = > @} (g (AN, (0). 2)
Pq

Here, Ny (1) = (Dola; a,|®o) — (B;la} (D, (0)];)
which can be evaluated by inserting twice the unit operator
S 1K1, where {|I)} is the complete set of eigenstates of

the ion created by the removal of an electron.
The migrating hole is described by the time-dependent
elements N ,,(#) of the matrix N(¢) in the orbital basis {¢,}.
We can readily bring the hole density into an appealing

form which is obtained by diagonalizing the matrix N(z).
This leads to

OF 1) = D13, )7, (1), 3)
14

where the resulting eigenvalues 72,,(7) and the orthonormal
eigenfunctions ¢ ,(7,7) depend on time. We call the
¢,(7, t) natural charge orbitals and the 7i,(f) are their
hole occupation numbers. ii ,(t) informs us on which part
of the charge of the hole is in the natural charge orbital
¢,(7, 1) at time t. Because of the conservation of hole
charge > i, (1) = 1.

We have computed the migration of hole charges for
many electronic systems and have found a similar short-
time behavior. In Fig. 1 we show results on the hole
occupation as a function of time for a noble gas atom
(KTr), for a small molecule (CO,), and for a more complex
larger molecule (N-methyl acetamide CH;-CO-NH-CH3).
It can be shown that the sudden removal of an electron
leads to @;|®,) and hence to the removal of an orbital from
the ground state (see, e.g., [3] and references therein). The
initial state has been prepared by removing an electron
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FIG. 1 (color online). Response of an atom (Kr), a small
molecule (CO,), and N-methyl acetamide (CH;-CO-NH-CHj)
to the sudden removal of an electron. Shown is the hole occu-
pation as a function of time on an attosecond time scale.

from an orbital @;(7) [ = @;(7, t = 0)]. This implies that at
time t =0 the hole density is Q(7 0) = |@;(P)|?%; ie.,
i(t=0) =1 and all other 7i,(r = 0) = 0. As time pro-
ceeds, the natural charge orbital &;(7, r) varies and with it
its occupation number 7i;(f). For convenience, we have
chosen @;(7) to be a Hartree-Fock orbital of the respective
system in its ground state. The universality of the effect we
discuss in this work does not depend on this choice; we
could have chosen orbitals from density functional theory
[5] or other functions. Nevertheless, we mention here that
the present choice does have some conceptual advantages
[6]. The curves in Fig. 1 are for initial ionization out of the
2 p orbital of Kr, the 177, orbital of CO,, and the 37 orbital
of CH3-CO-NH-CH3.

In spite of the vastly different nature of the systems
studied, Fig. 1 shows at short times up to 50 as a fast
monotonously decreasing hole occupation for all systems.
After about that time, a different charge migration mecha-
nism sets in and the hole occupation starts to oscillate with
characteristics specific for each system. Because of the
conservation of hole charge, the hole occupation of our
initially ionized orbital @;(7, ¢) continuously flows to other
natural charge orbitals of the system as time proceeds. The
changes in real space of the hole density Q(7, ¢) during the
first 50 as are even more pronounced than those anticipated
by inspection of Fig. 1 (see below). The reason is that Fig. 1
shows the hole occupation of ¢;(7, ), but this natural
charge orbital deforms as well as a function of time and,
in particular, other orbitals of different spatial topology and
location become populated, too.

Before proceeding with the analysis of the charge mi-
gration on the attosecond time scale, we discuss briefly a
few computational details. The hole density Q(F ) has
been computed by using ab initio methods only. These
methods have been in part newly developed for this pur-
pose. We do not go into details here. We just mention that
the hole density in Eq. (2) is evaluated as indicated in the

text below this equation. To this end, we have computed a
very large number of eigenstates |I) and eigenenergies E;
of the ion created by the removal of an electron and
evaluated the quantity

Npg(1) = Npg(0) = AP lay agl)J1D;){1
1J

— cos[(E; — Et]}. 4

For more details, see Ref. [7] and references therein.

As an example we show in the upper panel of Fig. 2 the
calculated ionization spectrum of CO,. Each eigenstate |I)
is represented by a vertical line at the respective ionization
energy which is given by E; — E,, where E|, is the ground
state energy of the system. Those eigenstates which are
populated by preparing the initial nonstationary state |®;)
discussed above are shown in the figure in black. The
heights of the corresponding vertical lines are given by
[{I|®;)|>. Analogously, a subset of the other lines seen in
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FIG. 2 (color online). Upper panel: ionization spectrum of
CO,. Each vertical line is associated with an eigenstate of the
ion. At high energy the spectrum consists of numerous weak
lines. The inset shows these lines on an enlarged scale. The lines
in black correspond to the eigenstates contributing to the non-
stationary state prepared (see the text). Lower panel: the hole
occupation of CO, as a function of time (as in Fig. 1) and the
result of the short-time approximation in Eq. (5) with A = 0.079,
Q = 44.091/fs, and A = 49.151/fs (dashed line).
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the figure (the gray ones) would play a role if the initial
state is prepared by removing an electron from another
orbital of CO,. From Fig. 2 we see that the initially
prepared state approximates quite well a single eigenstate
|I), namely, that seen just below 20 eV. The height of this
line is = 0.9. In other words, since |®;) is normalized and
hence 3 ;[{I|®;)|*> = 1, only a small fraction (1 — 0.9 =
0.1) of the spectral intensity is left for all other eigenstates
contributing to |®;). This fraction is found by the calcu-
lation to be divided among many eigenstates. Indeed, the
respective black vertical lines in the spectrum are tiny and
can hardly be seen. Their existence becomes evident once
the spectral intensity distribution is magnified as seen in
the inset of Fig. 2.

We stress here that the many initially weakly populated
high-energy eigenstates are responsible for the short-time
response to the removal of an electron. In all examples
studied including larger molecules where the spectra are
much more intricate than for CO, discussed above, the
short-time response disappears if we discard the weakly
populated high-energy eigenstates. To further facilitate this
central point and, at the same time, to derive an estimate for
the short-time response, we introduce in the following a
simple model. In this model we consider a single main
eigenstate |I;) which carries most of the spectral intensity
[(I,|®;)|> and a dense set of weakly populated eigenstates
|I) located at higher energy. Furthermore, we assume that
out of all elements N, (¢) in Eq. (2), the element N;,(¢) is
the dominating one at short times (this is, of course,
absolutely true at ¢ = 0). At last, we take the overlaps
[{I|®,)|? to follow a Gaussian distribution a exp[—(E; —
E)*/(4A%)], estimate (Ila,a;"|J) by (Ila;|PoXPola;1J),
and replace the sum over the states / and J in Eq. (4) by
integrations over the energies E; and E;. The result reads

i (t)=1—A[1 — cos(Qr) exp(—A?F)], 5

where A = 2./7[(Io|®;)|*aA and Q = E — E; . When fit-
ted to the full numerical result, this short-time approxima-
tion to the hole occupation reproduces the full result
excellently up to 50 as. An example is shown in the lower
panel of Fig. 2 for the case of CO,. Although the model is
crude, it explains the short-time response. The reason for
this success lies in the fact that many states contribute
collectively and, therefore, the details of a contributing
individual state are not relevant as long as the average
behavior is correctly described.

Let us now turn to what is, in our view, the key to the
understanding of the attosecond response. In Fig. 3 we
show for CO, the hole density itself in space as a function
of time from # = O up to 45 as. Because of the cylindrical
symmetry of this molecule it is convenient to depict the
radial dependence of Q(F, r). This is achieved by integrat-
ing Q(F, t) over the remaining two coordinates. We denote
the radial dependence of the hole density by Q(x, t). Atr =
0 the hole density has a bell-like shape. As time proceeds
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FIG. 3 (color online). The density of the hole in space as a
function of the first 45 as. The results are for CO, and correspond
to the hole in Figs. 1 and 2. Depicted is the radial hole density
(see the text). The inset shows the result of Eq. (6) where the
initially created hole and the exchange-correlation hole function
are approximated by normalized Gaussians [|&;(x)> ~
exp(—1.8 au~2x?), h(x) ~ exp(—0.25 au2x?), and a = 0.4].

electrons flow into the wings of the hole density distribu-
tion (remember that by definition Q > 0 means a hole and
0 <0 means the absence of a hole, i.e., the presence of
electrons). At the same time the hole becomes more local-
ized and its central part grows. During the first 45 as the
maximum of Q(x, 1), i.e., Q(0, 1), grows by more than 40%;
actually most of this increase takes place during the first
30 as, which is consistent with the behavior of the hole
occupation in Figs. 1 and 2.

To interpret the results let us first discuss the situation in
the ground state of the system and consider the pair distri-
bution function g(#). This function is the distribution of
electrons, on the average, about any electron. It is well-
known that due to exchange and correlation g(7) is reduced
in the neighborhood of 7 = 0; i.e., the electron charge is
depleted in the vicinity of the electron [8]. This reduction
leads to what is generally called the exchange-correlation
hole [5,8]. This hole moves with the electron. To a particu-
lar electron even in a so-called homogeneous electron gas,
the system is not uniform at all, since other electrons are
not likely to venture near to it as they are to other points.
Obviously, when an electron is suddenly removed from the
ground state, its exchange-correlation hole has no reason to
be sustained and will be filled by electrons as time pro-
ceeds. This is exactly what leads to the behavior seen in
Fig. 3.

The electron has been removed from the distribution
|&,(7)]?, and we have to compute the exchange-correlation
hole this distribution has in the ground state. To this end we
first need the corresponding ‘“pair’’ distribution function
g(7) which is the probability to find an electron in 7 while
the other electron has the distribution |@;(7)|>. The usual
function g(7) discussed above is obtained from the two-
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particle density (7, /) assuming that one particle is
at 7 =0, ie., from g(7)~ [y(FF7)6(F)dr [8].
Analogously, g(7) follows from (7 ) assuming that
one particle has the distribution |&,(#)|?, i.e., g(F) ~
[ (7, #)|@,(#)]*dF. To obtain the exchange-correlation
hole function (7) we now have to subtract g(7) py(7) from
po(7), where po(7) is the electron density in the ground
state [8]. After the sudden removal of the electron at t = 0
the exchange-correlation hole of that electron can be filled
by the remaining electrons. Since one can expect that the
neighboring electrons will move in first, this process is fast
and we assume that its time dependence is dictated by that
of the depletion of the hole occupation, see Fig. 2 and
Eq. (9), i.e., by a term proportional to 1 — 7i;(¢):

O(F 1) = c(tf|@;(PI* — ah(A[1 — cos(Qr)
X exp(—A2)]} (6)

« is the proportionality constant and c¢(¢) is a trivial time-
dependent normalization constant introduced to ensure that
the hole density is normalized.

Let us now return to the radial hole density distribution
in Fig. 3 and apply the ansatz (6). We choose the one-
dimensional functions |@;(x)|> and h(x) to be simple
Gaussians and take the other quantities from the short-
time approximation of #;(7) used in Fig. 2. Since all quan-
tities except that of h(x) are given, one can obtain the
Gaussian approximating A(x) from a fit to the ab initio
data in Fig. 3. The result for Q(x, r) using Eq. (6) is
depicted in the inset of Fig. 3. In spite of the simplifying
assumptions, the agreement with the ab initio data is
remarkable.

In conclusion, using many-body ab initio techniques, the
hole density created by suddenly removing an electron has
been calculated as a function of space and time. A univer-
sal fast response of the system takes place after this re-
moval and is essentially completed within 50 as. The well-
known exchange-correlation hole associated with an elec-
tron in the ground state of the system is filled by neighbor-
ing electrons as a function of time once the electron is
removed. To correctly describe this flow of charge, a large
number of eigenstates of the ionized system must be in-
cluded in the theoretical description and are populated in
reality by a sudden removal of an electron. The ab initio
calculations are relatively cumbersome but have the ad-
vantage that no essential approximations are involved.
Apart from the information obtained on the migration of
the created hole, information also on the exchange-
correlation hole can be extracted from the present
calculations.

Finally, we briefly touch upon possible experimental
realizations to investigate the above findings. To prepare

the initial state an electron must be suddenly removed from
the system. In principle, this can be accomplished by
ionizing the system with a high-energy photon.
Collisions with highly charged relativistic ions provide
another possibility. Annihilation of an electron by a posi-
tron is also sudden and sounds attractive, at least in prin-
ciple. To measure the short-time response, and the charge
migration in general, it would be desirable to use time-
resolved pump-probe techniques. Traditionally, these tech-
niques operate in the femtosecond (10713 s) regime [9].
More recently, however, subfemtosecond pulses have been
utilized for pump-probe experiments [10,11]. Although the
achieved resolution (=200 as) is currently too low to study
the short-time response investigated in this work, the field
of ultrashort light pulses is developing fast and the desired
resolution could be achieved some day. Another potential
approach to generate ultrashort pulses is by highly charged
relativistic ions. Such ions can generate subattosecond
electromagnetic pulses which can be interpreted as a field
of equivalent photons [12].
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