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We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach
for density fluctuations developed in previous articles. More precisely, we establish a large deviation
theory for the space-time fluctuations of the empirical current which include the previous results. We then
estimate the probability of a fluctuation of the average current over a large time interval. It turns out that
recent results by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)] in certain cases under-
estimate this probability due to the occurrence of dynamical phase transitions.
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The Boltzmann-FEinstein theory of equilibrium thermo-
dynamic fluctuations, as described, for example, in [1],
states that the probability for a fluctuation from equilib-
rium in a macroscopic region of volume V is proportional
to exp{VAS/k}, where AS is the variation of entropy
density calculated along a reversible transformation creat-
ing the fluctuation and k is the Boltzmann constant. This
theory is well established and has received a sound mathe-
matical formulation in statistical mechanics via the so-
called large deviation theory [2]. The study of large devia-
tions has been extended to stochastic dynamics in equilib-
rium [3] and nonequilibrium [4-6] stationary states. In a
dynamical setting one may ask new questions; for ex-
ample, what is the most probable trajectory followed by
the density in the spontaneous emergence of a fluctuation
or in its relaxation to equilibrium? We showed that the
entropy, as a functional of the local density, satisfies a
Hamilton-Jacobi equation; the Onsager-Machlup theory
[7] and the minimum dissipation principle [8] extend to
stationary nonequilibrium states.

Another macroscopic observable of great physical inter-
est is the current flowing through the system [9—13]. In the
present Letter we develop, in the same spirit of [4,5], a
Boltzmann-Einstein formula for the current fluctuations.
The asymptotic probability, as the number of degrees of
freedom increases, of observing a current fluctuation j on a
space-time domain [0, 7] X A can be described by a rate
functional Ij7(j). This functional plays the same role as
—AS in the classical Boltzmann-Einstein theory. The
present theory for current fluctuations implies the one for
the density and leads to a unified approach.

Among the many problems we can discuss within this
theory, we consider the behavior of a fluctuation J of the
average current over a large time interval. This is the
question addressed in [14] in one space dimension by
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postulating an ‘‘additivity principle” which relates the
fluctuation of the time averaged current in the whole
system to the fluctuations in subsystems. The probability
of a fluctuation J can be described by a rate functional
®(J) which we characterize, in any dimension, in terms of
a variational problem for the functional I, 7. The result
agrees with [14] only under additional hypotheses. We
show by explicit examples that these hypotheses are not
always satisfied. More precisely, while the rate functional
@ is always convex for thermodynamic reasons, the func-
tional of [14], which we call U, may be nonconvex. In such
a case U(J) underestimates the probability of the fluctua-
tion J. We interpret the lack of convexity of U as a
dynamical phase transition. In a forthcoming more detailed
paper [15] we shall study also the behavior of I and ®
under time reversal and connect it to the well-known
fluctuation theorem for entropy production of Gallavotti
and Cohen [16-18].

The basic microscopic model is given by a stochastic
lattice gas with a weak external field and particle reservoirs
at the boundary. More precisely, let A C R be a smooth
domain and set Ay = NA NZ% we consider a Markov
process on the state space X, where X is a subset of N;
e.g., X = {0, 1} when an exclusion principle is imposed.
The number of particles at the site x € Ay is denoted by
1, € X and the whole configuration by n € Xv. The
dynamical evolution is given by a continuous time
Markov process on the state space X~. This is specified
by transition rates c, (1) describing the jump of a particle
from a site x to its nearest neighbor y and rates ci (7)
describing the appearance or loss of a particle at the
boundary site x. The reservoirs are characterized by a
chemical potential y. We assume that the rates satisfy the
local detailed balance condition [18] with respect to a
Gibbs measure associated to some Hamiltonian .
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Typically, for a nonequilibrium model, we can consider A
the cube of side one and the system under a constant force
E/N. Moreover, we choose the chemical potential y so that
v(y/N) = v, if the first coordinate of y is 0, y(y/N) = v,
if the first coordinate of y is N, and impose periodic
boundary conditions in the other directions.

The macroscopic fluctuation theory of stochastic lattice
gases, as discussed below, is expected to apply to a wider
class of nonequilibrium systems with conservation laws,
e.g., the Hamiltonian anharmonic chain of [19] and fluids
driven by thermal gradients. We introduce the empirical
density 7 associated to a microscopic configuration n €
XM by requiring for each smooth function G:A — R;

(7.6) = [ aur"(Gw) =3 3 6/Mm,

xXEAy

so that 77" (u) is the local density at the macroscopic point
u = x/N in A. Consider a sequence of initial configura-
tions »" such that 7V(n") converges to some density
profile po. Under diffusive scaling the empirical density
at time ¢ converges, as N — 00, to p = p(t, u) which is the
solution of

dp =V -[ED(p)Vp — x(p)VV]=D(p) (1)

with initial condition p,. Here D is the diffusion matrix,
given by the Green-Kubo formula (see Sec. 11.2.2 of [20]),
X is the conductivity, obtained by linear response theory
(see Sec. I1.2.5 of [20]), and VYV is the external field. We
emphasize that these transport coefficients are defined in
terms of the equilibrium Gibbs measure. In particular, if we
denote by Sy(p) the entropy associated to FH , the usual
Einstein relation D(p) = R™'(p) x(p) holds; here R(p) =
Si(p)~! is the compressibility. The interaction with the
reservoirs appears as a boundary condition to be imposed
on solutions of (1). More precisely, we require that
So(p(u)) = y(u) and u € 9A; here dA denotes the bound-
ary of A and we recall that v is the chemical potential of
the reservoirs. The nonequilibrium stationary profile p is
the unique stationary solution of (1).

The probability to observe a density trajectory different
from the hydrodynamic behavior (1) is exponentially small
in N and given by [4,5]

Hj)l.:’[N(WN =~ p,t €[0, T]) ~exp{—=NIo11(p)},  (2)

where = denotes closeness in some metric, ~ logarithmic
equivalence as N — oo, and P, v stands for the distribution

of the process starting from %". The rate functional
I;o,9(p) is given by

1
lontp) =5 [ d(VHXPVE), )

where the external potential H has to be chosen so that p
solves

a,p=D(p) — V- [x(p)VH] “4)

with initial condition p( and the same boundary conditions
as the hydrodynamic Eq. (1). Equations (2)—(4) are the
analog of the Boltzmann-Einstein formula for dynamical
fluctuations.

We give now a parallel discussion for the current.
Denote by N7” the number of particles that jumped
from x to y in the macroscopic time interval [0, 7]. Here
we adopt the convention that N7 represents the number
of particles created at y due to the reservoir at x if x € Ay,
y € Ay and that N} represents the number of particles
that left the system at x by jumping to y if x € Ay, y &
Ay. The difference J; = IN7TY — N7 is the net number
of particles flown across the bond {x, y} in the time interval
[0, £]. In other words, given a path 1(s), 0 =< s < ¢, the
instantaneous current dJ;”/dt is a sum of & functions
localized at the jump times across the bond {x, y} with
weight +1, respectively, —1, if a particle jumps from x
to y, respectively, from y to x.

Fix a macroscopic time 7 and denote by JV the empiri-
cal measure on [0, T] X A associated to the current. For
smooth vector fields G = (G4, ..., G,), the integral of G
with respect to JV, denoted by JV(G), is given by

JN«n:=j:)nj;duqug~JNaJn

1

d T
:Mﬂggﬁmmmm)

where - is the inner product in R4, e; is the canonical basis,
and we sum over all x such that either x € Ay orx + ¢; €
Ay. We normalized JV so that it is finite as N — 0. Given
a density profile p let us denote by

J(p) = —3D(p)Vp + x(p)VV ©))

the current associated to p. The hydrodynamic equation (1)
can then be written as 9,p + V - J(p) = 0. Recall that the
initial configuration 1" is such that the empirical density
7™ (n") converges to the density profile p, and denote by
p(t) the solution of (1). Then the empirical current J¥(7)
converges, as N — oo, to J(p(z)), the current associated
with the solution of the hydrodynamic equation (1). If we
let r — oo we have J(p(1)) — J(p).

We next discuss the large deviation properties of the
empirical current. Fix a smooth vector field j:[0, T] X
A — R?. The large deviation principle for the current
states that

PV () = i 0) ~ exp{—N"Tio (i)} (6)

dJ;c,x+e,-
dr '

where the rate functional is

‘I N l T . —1 .
o) =5 [, 41U = 1) () L = 1)) )

in which J(p) is given by (5) and p = p(z, u) is obtained by
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solving the continuity equation 9,p + V - j = 0 with ini-
tial condition p(0) = p,. Of course, there are compatibility
conditions to be satisfied; for instance, if we have chosen a
Jj such that p(r) becomes negative for some ¢ € [0, T], then
To7r9(j) = +00. We present here a heuristic derivation of
(6) and (7). Fix a current j; in order to make j typical, we
introduce an external field F. Let p be the solution of

dp+V-j=0, p(0, u) = po(u), ®)
and F:[0, T] X A — R? be the vector field such that
j=J(p) + x(p)F = —=iD(p)Vp + x(p{VV + F}.
We introduce a perturbed measure [P’i\]/ :F which is obtained

by modifying the rates as follows:

Cf,y(n) = Cxly(n)eNle(f»x/N)'(y*X)'

Following a similar argument as the one for the large
deviation principle of the empirical density [5], one can
show that

dpy,
dPNF
,qN

= exp{—=N"Ijo11())}-

Moreover, under IPQI"NF , as N— oo, JN converges to j.

~ exp{—Nd% [ aE o]

Therefore,

Pl,'\]/N(JN(tr M) =~ .](t: I/l), (tr l/t) E (O! T) X A)

dPV,
_ [pN,F n 1 . ~ e*NdI[o,T](j)‘
s <_d|]:D:\7];VF {IV=j}

We emphasize that now we need to allow nongradient
external fields F, while in the large deviation principle
for the empirical density (2) it is sufficient to consider
gradient external fields [3,21]. The latter is therefore a
special case and can be recovered from (6) and (7).

We want to study the fluctuations of the time average of
the empirical current over a large time interval [0, T]; the
corresponding probability can be obtained from the space-
time large deviation principle (6). Fix some divergence free
vector field J = J(u) constant in time and denote by Ay ;
the set of all currents j such that 7! [8dj(t,u) = J(u).
The condition of vanishing divergence on J is required by
the local conservation of the number of particles. By the
large deviations principle (6), for 7" large we have

Py, (% ]0 T ar TN ~ J) ~ exp{—-NTDO(),  (9)

where the logarithmic equivalence is understood by send-
ing first N — o0 and then T — oo. In [15] we show that for
the so-called zero range process the limits can be taken in
the opposite order; we expect this to be true in general. The
functional @ is given by

®(J) = lim inf
T—o jeAr,

1
T T10,7()) (10)

By a standard subadditivity argument it is indeed easy to
show that the limit exists. We now prove that ® is a convex
functional. Let J = pJ; + (1 — p)J,: we want to show
that @) = pd(J,) + (1 — p)d(J,). Let us call
(10, p1(1), t € [0, pT] (respectively, (j2(2), p2(1)). 1 €
[0, (1 = p)T] the optimal path of current and density
which implements the minimum in (10) at J; (respectively,
J>). We then consider a path (j(z), p(¢)) which spends a
time interval pT following (j,, p;) and a time interval (1 —
p)T following (j,, p,) [and a finite time to go continuously
from (j, p;) to (j, p,)]. With such a path we get

DU) = 1 Toymn) + 3 Troa-pm(a) + O0/7)
= p®UY) + (1= P)B() + 0(1/T),

where we used the existence of the limit (10).

We next study the variational problem on the right-hand
side of (10). We begin by deriving an upper bound. Given
p=p) and J = J(u), V-J =0, let us introduce the
functionals

Up,J) =5 —J(p) x(p)'[T = J(p)],  AD
UW) = infUlp, J) (12)

where the minimum in (12) is carried over all profiles p
satisfying the boundary conditions and J(p) is given by (5).
When J is constant, that is, in the one-dimensional case,
the functional U is the one introduced in [14].

By choosing a suitable path j(, u) € A ; we first show
that

dJ) = UW). (13)

The strategy is quite simple; see also [14]. Let p = p(J) be
the density profile which minimizes the variational prob-
lem (12). Given the initial density profile p,, we construct a
path j = j(t, u), (t, u) € [0, T] X A as follows:

J fosr<r,
#] fr=tr<T—r7,
-J fT—r7=t=T,

j) =

where j is a vector field such that 7V - j = p, — p and 7 >
0 is some fixed time. It is now straightforward to verify that
j € Ary, as well as limy_o 5 I1o 11(j) = UWJ).

From (13) and the convexity of ®(J) it immediately
follows that

) = U (), (14)

where U™ denotes the convex envelope of U.

We next discuss a lower bound for the variational prob-
lem (10). We denote by U and U the same functionals as in
(11) and (12) but now defined on the space of all currents
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without the conditions of vanishing divergence. Let also
U** be the convex envelope of U.

Let j € Ay,. By the convexity of U** in the set of all
currents, we get

1

Fon) =7 [} a0 o) = [ a0

1 T sk [ - =Y
= ﬁ At (j(1)) = T (J). (15)

The upper and lower bounds (14) and (15) are, in gen-
eral, different. For a divergence-free J we have U(J) =
U(J), but since the convex envelopes are considered in
different spaces, we have only U**(J) = U**(J).

To understand the physical meaning of the convex en-
velope in (14), suppose J = pJ,; + (1 — p)J, and U(J) >
U~(J)=pUJ, + (1 — p)U(J,) for some p, J,, J,. The
values p, J;, J, are determined by J and U. In addition, we
assume that U** = U**. If we condition on observing an
average current J, the corresponding density profile is not
determined, but rather we observe with probability p the
profile p(J;) and with probability 1 — p the profile p(J5).
When U is not convex we have thus a situation in which the
time averaged current J is realized with the coexistence of
two dynamical regimes: we have a dynamical phase
transition.

The derivation of the upper bound shows that, if U is not
convex, our result differs from the one in [14]. On the other
hand, if U**(J) < U**(J), it is possible that one can further
improve the upper bound (14) by exploring currents with
nonvanishing divergence. In such a situation it is not clear
to us if ® can be directly related to U.

We can consider the large time behavior of the empirical
current as in Eq. (9) with the additional constraint that the
associated density is asymptotically time independent. In
such a case it is not difficult to show that (9) holds with
@ = U. With this extra constraint we are in fact forbidding
the system from oscillating.

In the models where the diffusion coefficient D(p) is
constant and the mobility y(p) is concave, for example, in
the symmetric simple exclusion where y = p(1 — p), it is
not difficult to see that U is convex. Therefore, in these
cases ® = U. In [15] we shall show that in the Kipnis-
Marchioro-Presutti model [22,23] at equilibrium U(J) is
convex while U(J) is not.

We next discuss an example, with a nonconcave y,
where the functional U is not convex. We fix equilibrium
boundary conditions p, = p; = p. We take D(p) = 1 and
x(p) a smooth function with y(0) = (1) = 0 which has a
nonconcave part x(p) = Ke P, for p in a given interval,
where C is a positive parameter. An explicit calculation
gives that U(J) = L ePF(CJ), where F(z) = 741, if J

c? e+

is in an appropriate interval. Since the second derivative of
F(z) can be negative, U(J) is not convex.
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