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Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators
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We report the observation of discrete displacement of nanomechanical oscillators with gigahertz-range
resonance frequencies at millikelvin temperatures. The oscillators are nanomachined single-crystal
structures of silicon, designed to provide two distinct sets of coupled elements with very low and very
high frequencies. With this novel design, femtometer-level displacement of the frequency-determining
element is amplified into collective motion of the entire micron-sized structure. The observed discrete
response possibly results from energy quantization at the onset of the quantum regime in these macro-
scopic nanomechanical oscillators.

DOI: 10.1103/PhysRevLett.94.030402 PACS numbers: 03.65.Ta, 62.25.+g, 62.30.+d, 62.40.+i
The quantum mechanical harmonic oscillator is a fun-
damental example of textbook quantum mechanics [1].
Its direct experimental realization in truly macroscopic
mechanical systems is of interest to a wide range of fields
[2–4], which include quantum measurement [5–8], quan-
tum computation [9], atomic and quantum optics [10],
condensed matter physics [11–13], and gravitational
wave detection [7,8]. However, signatures of quantum
behavior in a macroscopic mechanical oscillator are yet
to be observed [7,8] despite intense experimental efforts
[4,14,15]—most recently with nanomechanical structures
[16–18].

The essential problem in achieving quantized behavior
in mechanical structures [19] has been the access to the
quantum regime. Two characteristic time scales, decoher-
ence time and dissipation time, define quantum-to-
classical crossover. Although decoherence imposes a
much stricter condition, a necessary requirement for ob-
serving quantum behavior is given by dissipation or energy
relaxation (1=Q, inverse quality factor): for a system with
Q � 1, the quantum of oscillator energy hf is larger than
or comparable to kBT. Realization of this criterion requires
both millikelvin temperatures and gigahertz-range frequen-
cies. For example, a nanomechanical beam with a reso-
nance frequency of 1 GHz will enter the quantum regime at
T � 48 mK. For a doubly clamped beam, the fundamental
frequency scales as

���������
E=	

p
�t=L2�, where E is the Young

modulus, 	 is the mass density, and t and L are thickness
and length, respectively. In typical materials like silicon,
all dimensions must be in the submicron range to achieve
gigahertz resonance frequencies. However, if structure di-
mensions are reduced to increase the resonance frequency,
it naturally increases the spring constant k. As the structure
becomes stiffer, the displacement on resonance, x�FQ=k,
decreases for a given amplitude of force F. For a gigahertz-
range beam, the typical displacement is on the order of a
femtometer. Detecting femtometer displacements is further
impeded because the quality factor is known to decrease
with decreasing system dimensions [20–22].
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Propelled by the recent advances in nanomechanics,
there have been numerous attempts to approach the quan-
tum regime in nanomechanical oscillators [14,15] with low
thermal occupation number Nth � kBT=hf. The central
thrust of this effort has been the development of ultrasen-
sitive displacement detection techniques. These include the
coupling of the nanomechanical beam to a single-electron
transistor sensor [23–25], a cooper-pair box device [26],
SQUID sensor [27], and piezoelectric sensor [28], as well
as optical interferometric techniques [29]. Recently, in a
116-MHz beam oscillator measured down to a cryostat
temperature of 30 mK, Knobel and Cleland [30] have
reported displacement sensitivity 100 times the standard
quantum limit, which is the limiting factor despite the very
low occupation numbers they achieve. At a lower oscillator
frequency of 20 MHz measured down to the oscillator
temperature of 56 mK, LaHaye et al. [31] have achieved
greater resolution, 4.3 times the standard quantum limit, at
the cost of larger Nth � 58. Our approach is inherently
different in that instead of attempting to further improve
the detection sensitivity, we focus on a novel design of the
nanomechanical structures, which display gigahertz-range
frequencies with a corresponding displacement in the
picometer range.

In this Letter we report the first observation of discrete
displacement of possible quantum origin in a set of nano-
mechanical oscillators, which resonate at a frequency as
high as 1.49 GHz. At a measured temperature of 110 mK,
which corresponds to a thermal occupation of Nth ! 1, the
oscillators demonstrate transitions between two discrete
positions, with consistent amplitude in both magnetic field
and time domain sweeps. We argue that the wave functions
of the two low-lying energy levels of the oscillator at
Nth ! 1 result in the observed quantized displacement.
Furthermore, the nanomechanical structure truly repre-
sents a macroscopic quantum system as the quantized
displacement involves roughly 50� 109 silicon atoms.

Our device is an antennalike structure designed to have
coupled but distinct components, pictured in Fig. 1. Two
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FIG. 2 (color). Low order resonance mode of the antenna
structure at 21 MHz with Q � 11 000. (a) The induced voltage
Vemf is an inverted Lorentzian peak on top of a noise back-
ground. Inversion results from extra phase in the coaxial cable
impedance. Three representative sweeps show the resonance
peak at 5, 6, and 8 T. (b) As expected from the magnetomotive
scheme, Eq. (1), the peak height varies as B2 for constant Idr.
(c) Plot of the linear power dependence of the resonance peak at
2.5 T field, on a log-log scale. The corresponding displacement x
is linear with driving force Fdr for forces below 1.3 pN.
Nonlinearity ensues for larger Fdr. The effective spring constant
keff � m!

2
0 measured on resonance !! !0 is 330 N=m.
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(c)
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FIG. 1 (color). (a) Scanning electron micrograph of the sus-
pended antenna oscillator. It consists of a central Si beam,
10:7 �m long and 400 nm wide, as well as two arrays of
500 nm long and 200 nm wide paddles on both sides. The total
thickness of the structure is 245 nm, comprised of the device
layer of silicon (185 nm) and the thermally evaporated gold
electrode (60 nm), colorized in yellow. (b) Modal simulation of
the antenna structure, showing the low frequency (f ’ 10 MHz)
fundamental resonance mode. (c) In the high order collective
mode, the paddles vibrate at their own natural frequency (f �
1 GHz), and the induced in-phase strain drives the central beam,
which acts as an amplifier of the paddle motion.
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rows of small paddles on both sides of a doubly clamped
beam serve as frequency-determining elements, resonating
at the same gigahertz natural frequency. When all paddles
vibrate in phase, shown in Fig. 1(c), the central beam
couples to the paddle motion at the same gigahertz fre-
quency and effectively amplifies it, due to its large size.

We have fabricated four identical antenna structures
from single-crystal silicon with e-beam lithography and
nanomachining. When placed at the center of a 16 T super-
conducting magnet in a dilution fridge, each structure is
driven magnetomotively by a Lorentz force Fdr�!� �
I�!�LB with current I�!� through the electrode of length
L in perpendicular magnetic field B. The resulting motion
is given by the harmonic oscillator response function
x�!� � Fdr�!�=��!2

0 �!
2 	 i!0!=Q�m
. The beam dis-

placement x in magnetic field B induces a voltage
Vemf�!� � i�LB!0x�!� in the gold electrode. Here � is
a mode-dependent integration constant [30]. We measure
Vemf using an rf network analyzer. Combining the expres-
sions for Fdr�!�, x�!�, and the harmonic oscillator equa-
tion, the magnetomotive expression is

Vemf�!� �
i!�L2B2=m

!2
0 �!

2 	 i!!0=Q
Idr�!�: (1)

A typical low order resonance mode of the antenna
structure is measured at 21 MHz, as shown in Fig. 2(a).
With the oscillator at the equilibrium temperature of
60 mK, the thermal occupation is Nth ’ 60, corresponding
03040
to the classical regime. We verify the expected B2 depen-
dence of the response on the magnetic field B in Fig. 2(b),
which follows from the magnetomotive relation in Eq. (1).
For small forces, the center-beam displacement x on reso-
nance varies linearly with the driving force Fdr in accor-
dance with x�!0� � QFdr�!0�=keff [Fig. 2(c)]. The linear
fit yields an effective spring constant keff � 330 N=m. A
detailed analysis of all the other complex modes and their
shapes as well as their dependence on structure geometry
will be given elsewhere.

Thermal equilibrium of the oscillator with the mixing
chamber of the dilution cryostat occurs primarily through
thermal phonon exchange between the single-crystal oscil-
lator and the bulk and by coupling to the gold electrode on
top of the beam through the Kapitza resistance [32]. The
thermal phonon wavelength is given by �th � �hvs=kBT,
where vs � 5000 m=s is the sound velocity in silicon. Free
thermal phonon propagation through the silicon beam
(width w � 400 nm) can occur down to T � �hvs=kBw �
95 mK. Thermalization of the oscillator occurs also
through the silicon-gold interface. The thermal Johnson

noise signal size Sthx �
��������������������������������
4kBTQ=meff!

3
p

decreases dra-
matically with increasing frequency. For example, a
1-�m long silicon beam with a resonance frequency of
2-2



PRL 94, 030402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 JANUARY 2005
1.5 GHz has Sthx ’ 3� 10�18 m=
������
Hz

p
at a temperature of

100 mK, 3 orders of magnitude smaller than the best
sensitivity of �10�15 m=

������
Hz

p
reported to date [30,31].

We observe a high-frequency collective mode at
1.49 GHz with Q ’ 150, as shown in Fig. 3(a); this is the
highest nanomechanical resonance frequency reported to
date [33]. For temperatures below 100 mK, the occupa-
tion factor is Nth ! 1, and we expect the onset of non-
classical behavior. However, it is imperative to verify that
the mode is classical for larger values of Nth. Magnetic
field and power sweeps at T � 1000 mK, which corre-
sponds to Nth ’ 14, indeed demonstrate the same B2 field
and linear force dependence, as shown in Figs. 3(b) and
3(c). Furthermore, the experimentally determined effective
spring constant keff � 188 N=m is an order of magnitude
lower than the estimated value for a 1-GHz straight silicon
beam, giving higher displacements as expected from our
structure design.

In stark contrast to the classical behavior at T �
1000 mK, the collective mode response exhibits nonmono-
tonic magnetic field dependence when the temperature is
lowered to T � 110 mK, corresponding to Nth ’ 1. In
Figs. 4(b) and 4(c), the plots show discrete peak voltage
transitions at three values of the magnetic field. While the
FIG. 3 (color). Classical response of the antenna structure in
the 1.48 GHz collective high order mode with Q � 150. At T �
1000 mK the occupation factor is Nth ’ 14 for this mode.
(a) Four plots (A, B, C, and D) of the induced voltage Vemf
show the main peak at 1.479 GHz and a smaller secondary peak
at 1.49 GHz, for various values of the magnetic field B. The data
are normalized to the noise background at 0 T. (b) In agreement
with the magnetomotive expression, the plot of the peak height
versus magnetic field B shows quadratic dependence, entirely
analogous to the 21 MHz plot. (c) Linear dependence of the
induced power Pin on driving power Pdr shows direct evidence of
classical Hooke’s law oscillator behavior. The effective spring
constant is keff � 188 N=m.
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transitions do not always occur at exactly the same field
values, the size of the jumps remains unchanged, suggest-
ing that the oscillator switches between two well-defined
states. The transition is reproducible for field sweeps in
either direction. Furthermore, in preliminary measure-
ments we have observed spontaneous decay from the upper
to the lower state in time, shown in Fig. 4(d), with a more
detailed investigation forthcoming.

The oscillator response in the 1.49-GHz mode in Figs. 3
and 4 demonstrates continuous dependence on drive force
(energy) at 1000 mK and discrete response at 110 mK,
corresponding to the classical regime (Nth � 14) and the
quantum regime (Nth � 1), respectively. Since our experi-
ment involves the measurement of the absolute value of the
displacement jxj, it is possible that the discrete transitions
show signatures of energy quantization as jxj /

����
E

p
, where

E is the oscillator energy. The two distinct saturated states
[A and D in Fig. 4(b)] could then correspond to the ground
state j0i and the first excited state j1i in the energy eigen-
basis, respectively. The intermediate jumps between these
two states [in the range of 6.5–7 T in Fig. 4(b)] could
represent transitions induced by thermal fluctuations, as
the temperature even at Nth � 1 is high enough that the
thermal energy kBT smears the gap hf in the energy levels.
If this is true, then future experiments at higher frequencies
and lower temperatures, corresponding to a lower Nth, will
show clear transitions from j0i ! j1i. Further reduction in
FIG. 4 (color). Nonclassical response in the 1.49 GHz collec-
tive mode at T � 110 mK. (a) Four discrete plots showing rapid
peak growth within the narrow B field range from 6.0 to 6.87 T,
which corresponds to 45 to 52 pN of force. We observe a 0.6%
frequency blueshift with decreasing temperature. (b) The peak
growth is nonmonotonic, as seen in this separate continuous field
sweep at the center frequency f0 � 1:49 GHz. The peak under-
goes several transitions with amplitude 500 nV between two
well-defined states. The labels A, B, C, and D indicate the
approximate location of peak growth in plot (a). (c) Two sweeps
of the magnetic field, up (black) and down (blue), reproducing
the same transition, with occasional transitions to a possible
intermediate state. (d) With all parameters held constant, the
system spontaneously decays in time, with no further changes
observed within a measurement period of 2 h.
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Nth could even show multiple transitions j0i ! j1i !
j2i � � � , corresponding to access to the first and higer-order
excited states.

Another possibility is that the oscillator does not start
from the energy eigenbasis, as there is no a priori reason
for it to be in this preferred basis. As the driving energy is
increased (by increasing the field), the oscillator goes from
a certain ground state [point A in Fig. 4(b)] to a linear
combination of j0i and j1i with coefficients corresponding
to maximum amplitude of displacement. This process
should necessarily involve only the first couple of low-
lying states. In fact, for Nth � 1, only the low-lying states
(j0i and j1i) are substantially populated.

Similar discrete behavior can result classically due to
transitions between two nonlinear bistable beam states.
After an extensive study of bistability in nanobeams [34],
we rule out this mechanism in this case because the re-
sponse of the structure at the drive level used in the
experiment is manifestly linear, seen from the Lorentzian
peak shape [Fig. 4(a)]. However, there may be other semi-
classical mechanisms which involve both nonlinearity and
quantum effects [35].

In order to clearly establish whether or not the observed
discrete features are quantum mechanical in origin, a com-
plete theory is needed. For example, simulation of the
mechanics of the antenna structure containing 50� 109

silicon atoms must involve multiscale modeling, including
molecular dynamics at the atomic level and finite element
analysis in the continuum elastic theory. Understanding the
measurement of the quantum system itself requires identi-
fying the components of the quantum measurement pro-
cess: quantum system, measuring apparatus, and their
interaction. Coupling to the environment, which introduces
decoherence and dissipation, must be included in the theo-
retical analysis. On the experimental side, an irrefutable
observation of quantum mechanical transitions will require
measurements at higher frequencies and lower tempera-
tures (Nth < 1) with a clear gap between the energy levels.
Detailed study of the noise in the discrete states will also
help elucidate the possible quantum mechanical origin of
the oscillator response.

In conclusion, we have measured displacement in a
series of nanomechanical oscillators with 1.49-GHz reso-
nance frequencies down to 110 mK temperatures. While
the low frequency mode at 21 MHz shows classical behav-
ior with expected drive dependence (/B2), the 1.49 GHz
mode displays nonmonotonic dependence on driving force
at a temperature which corresponds to a thermal occupa-
tion number Nth ! 1. Our experimental data indicate the
first observation of quantum displacement in macroscopic
nanomechanical oscillators.

Our work is supported by the National Science
Foundation (Grants No. DMR-0449670, No. CCF-
03040
0432089, No. ECS-0404206, and No. DMR-0346707),
Department of Defense (Grant No. DAAD 19-00-2-
0004), Petroleum Research Fund (ACS), and the Sloan
Foundation.
2-4
[1] P. A. M. Dirac, The Principles of Quantum Mechanics
(Clarendon , Oxford, 1981).

[2] A. Leggett, in Chance and Matter, Proceedings of Les
Houches Summer School, Session XLVI, edited by
J. Souletie et al. (Elsevier Science and Technology
Academic Press, San Diego, CA, 1987).

[3] A. J. Leggett, J. Phys. Condens. Matter 14, R415 (2002).
[4] A. J. Leggett, Phys. Scr. T102, 69 (2002).
[5] J. A. Wheeler and W. H. Zurek, Quantum Theory and

Measurement (Princeton University, Princeton, 1983).
[6] W. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[7] C. Caves et al., Rev. Mod. Phys. 52, 341 (1980).
[8] M. Bocko and R. Onofrio, Rev. Mod. Phys. 68, 755

(1996).
[9] Y. Nakamura et al., Nature (London) 398, 786 (1999).

[10] M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).
[11] J. Clarke et al., Science 239, 992 (1988).
[12] P. Silvestrini et al., Phys. Rev. Lett. 79, 3046 (1997).
[13] J. R. Friedman et al., Phys. Rev. Lett. 76, 3830 (1996).
[14] M. Blencowe, Science 304, 56 (2004).
[15] A. Cho, Science 299, 36 (2003).
[16] M. Blencowe, Phys. Rep. 395, 159 (2004).
[17] D. Santamore et al., Phys. Rev. B 70, 144301 (2004).
[18] P. Werner and W. Zwerger, Europhys. Lett. 65, 158 (2004).
[19] V. B. Braginsky and F. Y. Khalili, Quantum Measurement

(Cambridge University, Cambridge, 1992).
[20] P. Mohanty et al., Phys. Rev. B 66, 085416 (2002).
[21] D. W. Carr et al., Appl. Phys. Lett. 75, 920 (1999).
[22] K. H. Ahn and P. Mohanty, Phys. Rev. Lett. 90, 085504

(2003).
[23] M. H. Devoret and R. J. Schoelkopf, Nature (London) 406,

1039 (2000).
[24] M. P. Blencowe and M. N. Wybourne, Appl. Phys. Lett.

77, 3845 (2000).
[25] D. Mozyrsky et al., Phys. Rev. Lett. 92, 018303 (2004).
[26] A. D. Armour et al., Phys. Rev. Lett. 88, 148301 (2002).
[27] G. M. Harry et al., Appl. Phys. Lett. 76, 1446 (2000).
[28] R. Knobel and A. N. Cleland, Appl. Phys. Lett. 81, 2258

(2002).
[29] H. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358

(2001).
[30] R. G. Knobel and A. N. Cleland, Nature (London) 424,

291 (2003).
[31] M. D. LaHaye et al., Science 304, 74 (2004).
[32] F. Wellstood, Phys. Rev. B 49, 5942 (1994).
[33] X. M. H. Huang et al., Nature (London) 421, 496 (2003).
[34] R. Badzey et al., Appl. Phys. Lett. 85, 3587 (2004).
[35] V. Peano and M. Thorwart, Phys. Rev. B 70, 235401

(2004).


